首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于改进蚁群粒子群算法的移动机器人路径规划   总被引:1,自引:0,他引:1  
全局静态地图下,针对蚁群算法规划机器人移动路径时存在计算时间长、搜索效率低,并且得到的优化路径转弯次数过多的问题,提出了一种改进蚁群粒子群算法:首先利用粒子群算法快速得到蚁群算法初始信息素,然后进行蚁群算法路径规划,对得到的路径采用惯性优化,对每个节点进行遍历,当 2个节点间的路径上无障碍物时,将中间节点删除,转换为优化路径。仿真实验表明,该方法与传统蚁群算法及相关改进算法相比,能有效减少迭代次数、提高搜索效率、减少转弯次数、缩短路径长度,从而提高路径质量。  相似文献   

2.
基于改进蚁群算法的移动机器人全局路径规划   总被引:3,自引:0,他引:3  
对已栅格化的机器人运动空间中的障碍物预处理,在蚁群算法原理的基础上,改进了伪随机比例规则,使蚂蚁的下一节点选择更加倾向于目标点,提高了蚂蚁的搜索效率。引入最优一最差蚂蚁思想来更新全局信息素轨迹的强度,增强搜索过程的指导性。为了防止早熟收敛现象的发生,采用最大一最小蚂蚁思想来限制信息素的强度。仿真研究表明:该算法具有高适用性和灵活性,对解决静态路径规划问题是可行的,有效的。  相似文献   

3.
移动机器人的路径规划是按照某一性能指标搜索一条从起点到目标点的最优或次最优的无碰撞路径.将蚁群算法用于移动机器人的路径规划,阐述了移动机器人路径规划蚁群算法的基本原理,指出蚁群算法的迭代过程是马尔科夫过程,分析了蚁群算法的收敛性,提出了改善蚁群算法收敛性的途径.仿真结果表明:该算法能够在较短的时间内规划出较优的路径,且该算法有效可行.  相似文献   

4.
5.
针对传统的蚁群算法在解决移动机器人路径规划问题时存在收敛性差、搜索速度慢、过于依赖参数选择等问题,提出一种自适应萤火虫算法改进蚁群算法的混合算法。首先,在蚁群算法基础上引入萤火虫算法,对蚁群算法的核心参数进行优化;其次,针对两种算法混合后时间开销大的问题,引入精英策略和承接式相结合的信息素更新方式,并对萤火虫算法的步长因子进行自适应设计,以提高整个混合算法的求解效率和求解精度;最后,在不同的栅格环境下进行路径规划仿真实验。结果表明,混合智能算法较传统蚁群算法综合效果有明显提升。  相似文献   

6.
针对蚁群算法收敛速度慢、效率低、容易陷入局部最优解的不足,本文提出一种自适应变化信息素总量的方式,使算法获得较快收敛速度.通过对启发函数的改进,增加蚁群搜索的目的性,降低陷入局部最优解的概率.仿真结果表明,改进的蚁群算法提高了搜索能力和收敛速度,验证了算法的有效性和优越性.  相似文献   

7.
传统蚁群算法在解决机器人路径规划的问题上存在收敛慢,容易收敛于次优路径的不足.针对以上不足,研究在状态转移概率、信息素更新方面进行改进.在状态转移概率上引入了一个避障函数因子,减小蚂蚁进入地图陷阱的概率,从而有效减少陷入死锁的蚂蚁数量,加快收敛速度.在信息素方面,加入了随迭代次数变化的信息素挥发因子,增加算法进行全局搜索的可能性,避免算法陷入局部最优.设计三种栅格障碍图对两种算法进行仿真,结果对比均表明,经过改进得到的AOA蚁群算法的初次收敛次数更少,迭代速度大大增强,并且最终规划得到的最小路径长度均比原算法小,与其他的改进算法相比,在找到最优路径的同时,其初次迭代的收敛次数也大大降低.  相似文献   

8.
轮式移动机器人路径规划的遗传进化算法   总被引:2,自引:0,他引:2  
主要研究了已知障碍空间的、基于目标定位的移动式机器人行走路径规划及优化的遗传进化算法的求解方法。在此方法中,把预定目标定为机器人运动规划的吸引子,障碍物作为排斥子,针对障碍环境的特点设计了有效的遗传算子,并提出了度量个体适应度及群体适应度的计算方法,该方法编码简单、方便、占用空间小。实验调试表明,此算法效果良好,经过若干代的进化总能得到较优的规划结果。  相似文献   

9.
针对标准萤火虫算法寻优容易陷入局部最优的缺点,通过改变萤火虫算法的搜索策略,对萤火虫算法进行改进,提高萤火虫算法的寻优能力。在移动机器人路径规划问题上采用改进后的萤火虫算法,实现了移动机器人全局路径规划的最优路径,理论与实验结果证明了改进后的萤火虫算法的有效性,此方法能满足移动机器人路径规划的要求。  相似文献   

10.
动态环境下基于改进蚁群算法的机器人路径规划研究   总被引:2,自引:0,他引:2  
针对动态复杂条件下的移动机器人路径规划问题,根据全局静态环境先验知识,提出一种改进蚁群算法。在经典蚁群算法的基础上通过调整转移概率,限定信息素强度的上下界,并引入相关策略解决死锁问题,可以避免初期规划的盲目性,增加解的多样性,提高算法的全局搜索能力,进一步减小算法早熟的可能性。在规划过程中,根据动态障碍物运行方向的变化与否,提出了相应的碰撞避免策略,并针对环境突发状况引入Follow_wall行为进行改进。仿真实验证明,该算法优于经典蚁群算法,可有效地指导移动机器人避免环境中的动态障碍物,获取无碰最优或次优路径,并能更好地适应环境的变化。  相似文献   

11.
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.  相似文献   

12.
基于遗传蚁群算法的机器人全局路径规划研究   总被引:6,自引:0,他引:6  
蚁群算法是基于生物界群体启发行为的一种随机搜索寻优方法,它的正反馈性和协同性使其可用于分布式系统,隐含的并行性更使其具有极强的发展潜力,它在解决组合优化问题上有着良好的适应性。因此将其应用到智能机器人全局路径规划中,其目的是探索一种新的路径寻优算法.在基于栅格划分的环境中,研究了机器人路径规划问题中蚁群系统的"外激素"表示及更新方式,并将遗传算法的交叉操作结合到蚁群系统的路径寻优过程中,提高了蚁群系统的路径寻优能力,为蚁群算法的应用提供了一种新的探索.  相似文献   

13.
自适应蚁群算法在空间机器人路径规划中的应用   总被引:1,自引:0,他引:1  
为了弥补传统路径规划方法缺乏足够鲁棒性的问题,采用自适应蚁群算法实现了空间机器人路径规划.针对传统蚁群算法在计算初期出现停滞的现象,修改了信息激素物质的更新方法.自适应蚁群算法根据学习次数和与最近障碍物的距离来调节信息激素物质.仿真结果表明,该算法在采用较少蚂蚁的情况下,与一般蚁群算法相比,能够快速找到理想路径.  相似文献   

14.
提出了基于自适应并行遗传算法的移动机器人路径规划算法,其基本思想是结合多种群并行进化及自适应调整控制参数,提高了搜索的范围和效率,缓解了传统遗传算法早熟收敛问题,从而克服了使用单种群遗传算法进行路径规划的不足.实验结果表明了该算法在移动机器人路径规划中的可行性和有效性.  相似文献   

15.
基于混沌遗传算法的移动机器人路径规划方法   总被引:5,自引:0,他引:5  
结合遗传算法优化的反演性和混沌优化方法的遍历性,基于混沌遗传算法的移动机器人路径规划方法能够有效改善遗传算法的局部搜索能力和搜索精度,避免单纯使用遗传算法规划机器人路径时容易出现的早熟收敛现象.仿真试验表明,提出的路径规划方法在稀疏环境和密集环境下均能收敛到全局最优路径,具有更强的鲁棒性.  相似文献   

16.
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAK-LINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.  相似文献   

17.
针对机器人的路径规划,提出了一种将粗糙集和微种群遗传算法相结合的路径规划算法.该算法采用栅格法划分机器人的工作空间,十进制路径编码方式.在粗糙集生成初始路径的基础上,通过运用微种群遗传算法对这些初始路径进行优化后,得到了一条最优或近似最优路径.在Matlab环境进行的机器人路径规划仿真实验中,笔者用到的微种群遗传算法与一般遗传算法相比,具有优化效果明显,环境适应性强等优点,能够有效地提高机器人路径规划速度,结果表明作者提出的方法是正确和有效的.  相似文献   

18.
利用遗传算法解决了在复杂情况下机器人须经过多点并最终返回起点的路径规划问题.并根据实际情况,提出了相应的遗传编码方法,构造了相应的遗传算子.取得了很好的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号