首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier article the authors related visually‐ scaled large colour differences to ΔE* values calculated using four colour‐difference formulae. All four metrics yielded linear regressions from plots of visual colour difference against ΔE*, and ΔE gave the best linear fit, but the correlations were rather low. In an effort to clarify matters, the previous investigation is expanded to include data not hitherto examined. The link between visual colour difference and ΔE* colour metrics is further explored in terms of a power law relationship over a wide range of lightness, hue, and chroma variations within CIELAB colour space. It is shown that power‐law fits are superior to linear regressions in all cases, although correlations over large regions of the colour space are not very high. Partitioning of the experimental results to give reduced data sets in smaller regions is shown to improve correlations markedly, using power‐law fits. Conclusions are drawn concerning the uniformity of CIELAB space in the context of both linear and power‐law behavior. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 116–122, 2000  相似文献   

2.
Most of the colour‐difference formulae were developed to fit data sets having a limited range of colour‐difference magnitudes. Hence, their performances are uncertain when applying them to a range of colour differences from very small to very large colour differences. This article describes an experiment including three parts according to the colour‐difference magnitudes: large colour difference (LCD), small colour difference (SCD), and threshold colour difference (TCD) corresponding to mean ΔE values of 50.3, 3.5, and 0.6, respectively. Three visual assessment techniques were used: ratio judgement, pair comparison, and threshold for LCD, SCD, and TCD experiments, respectively. Three data sets were used to test six colour‐difference formulae and uniform colour spaces (CIELAB, CIE94, CIEDE2000, CAM02‐SCD, CAM02‐UCS, and CAM02‐LCD). The results showed that all formulae predicted visual results with great accuracy except CIELAB. CIEDE2000 worked effectively for the full range of colour differences, i.e., it performed the best for the TCD and SCD data and reasonably well for the LCD data. The three CIECAM02 based colour spaces gave quite satisfactory performance. © Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

3.
A new colour model, named LLAB(l:c) is derived. It includes two parts: the BFD chromatic adaptation transform derived by Lam and Rigg, and a modified CIELAB uniform colour space. The model's performance was compared with the other spaces and models using the LUTCHI Colour Appearance Data Set. The results show that LLAB(l:c) model is capable of precisely quantifying the change of colour appearance under a wide range of viewing parameters such as light sources, surrounds/media, achromatic backgrounds, sizes of stimuli, and luminance levels. It had a similar performance as that of the Hunt colour appearance model. The LLAB(l:c) model was also tested using various colour difference datasets. The model gave a similar performance as the state-of-the-art colour difference formulae such as CMC, CIE94, and BFD. This performance is considered to be very satisfactory, and the model, therefore, should be considered for field trials in applications such as colour specification, colour difference evaluation, cross-image reproduction, gamut mapping, prediction of metamerism and colour constancy, and quantification of colour-rendering properties. The model does not give predictions for chroma (as distinct from colourfulness), or for brightness, and it does not include any rod response. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
This experiment was carried out to investigate some viewing parameters affecting perceived colour differences. It was divided into eight phases. Each phase was conducted under a different set of experimental conditions including separations, neutral backgrounds, and psychophysical methods. Seventy‐five wool sample pairs were prepared corresponding to five CIE colour centers. The mean colour difference was three CIELAB units. Each pair was assessed by a panel of 21 observers using both the gray scale and pair comparison psychophysical methods. The assessments were carried out using the three different backgrounds (white, mid‐gray, and black) and a hairline gap between the samples. Assessments on the gray background were repeated using a large (3‐inch) gap between the samples. It was found that the visual results obtained from both psychophysical methods gave very similar results. The parametric effect was small, i.e., the largest effect was only 14% between the white and gray background conditions. These visual data were also used to test four colour‐difference formulae: CIELAB, CMC, BFD, and CIE94. The results showed that three advanced colour‐difference formulae performed much better than CIELAB. There was a good agreement between the current results and those from earlier studies. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 331–343, 1999  相似文献   

5.
Several colour‐difference formulas such as CMC, CIE94, and CIEDE2000 have been developed by modifying CIELAB. These formulas give much better fits for experimental data based on small colour differences than does CIELAB. None of these has an associated uniform colour space (UCS). The need for a UCS is demonstrated by the widespread use of the a*b* diagram despite the lack of uniformity. This article describes the development of formulas, with the same basic structure as the DIN99 formula, that predict the experimental data sets better than do the CMC and CIE94 colour‐difference formulas and only slightly worse than CIEDE2000 (which was optimized on the experimental data). However, these formulas all have an associated UCS. The spaces are similar in form to L*a*b*. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 282–290, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10066  相似文献   

6.
7.
A grey‐scale psychophysical experiment was carried out for evaluating colour differences using printed colour patches. In total, 446 pairs of printed samples were prepared surrounding 17 colour centers recommended by the CIE with an average δE of 3 units. Each pair was assessed 27 times by nine observers. The visual results were used to test some selected more advanced colour‐difference formulae and uniform colour spaces. The results showed that CIELAB and OSA performed the worst, and the advanced formulae and spaces gave quite satisfactory performance such as CIEDE2000, CIE94, DIN99d, CAM02‐UCS, and OSA‐GP‐Eu. The colour discrimination ellipses were used to compare with those of the earlier studies. The results showed that they agreed well with each other. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

8.
This study aimed to investigate the variability of skin colour measurements for two kinds of extensively used instruments, telespectroradiometers (TSR) and spectrophotometers. A Konica Minolta CM700d spectrophotometer and a PhotoResearch PR650 telespectroradiometer were used to measure the forehead and the cheekbone of 11 subjects. The variability was evaluated using different measurement parameters including measurement aperture size and pressure on the facial locations for the spectrophotometer, and measurement distance for the telespectroradiometer. The mean colour difference from the mean was used to define the short‐term repeatability; the CIELAB colour difference and colour appearance changes in each perceptual CIELAB attribute between each of two instrument settings were used to evaluate the inter‐instrument agreement. The results show that, for the TSR, different measurement distances have identical repeatability but the colour shifts were significant; for the spectrophotometer, the large aperture size of the target masks gave the most repeatable results and the aperture size had more influence on the colour shifts than the measurement pressure. In addition, to investigate the effect of ethnicity and body location on measurement variability, skin colours from additional 151 subjects were measured. The differences between the measurements for different body locations were, in general, larger than the instrument repeatability and the inter‐instrument agreement.  相似文献   

9.
A colour‐naming model was developed to categorize volumes for each of the 11 basic names in CIELAB colour space. This was tested with three different sets of data for two languages (English and Mandarin), derived from extensive colour categorization experiments. The performance of the model in predicting colour names was satisfactory, with an average prediction error of 8.3%. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 270–277, 2001  相似文献   

10.
A survey has been made of the use and methods of Instrumental colour difference measurement in quality control of colour within Europe. Several colour differnce formulae are in use. The performances of the most used formulae, namely CIELAB, CMC, BFD, M&S, and Datacolor, are compared. The degree of implementation of colour difference measurement in the textile, leather, automobile, and coatings industries is summarised. The use of new computer graphics to ensure continuity of colour from batch to batch and the alternative methods of colour sorting to minimise colour differences between batches are described.  相似文献   

11.
In this study, the crispening effect was clearly observed when 38 neutral‐coloured sample pairs with only lightness differences were assessed under 5 neutral backgrounds of different lightness values. The sample pairs are CRT‐based colours, and they are selected along the CIELAB L* axis from 0 to 100. The magnitude of colour difference of each pair is 5.0 CIELAB units. The visual assessment results showed that there is a very large crispening effect. The colour differences of the same pair assessed under different backgrounds could differ by a factor of up to 8 for a sample pair with low lightness. The perceived colour difference was enlarged when the lightness of a sample pair was similar to that of the background. The extent of crispening effect and its quantification are discussed in this investigation. The performances of five colour‐difference equations were also tested, including the newly developed CIEDE2000. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 374–380, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20045  相似文献   

12.
Varying magnitude of colour differences from threshold up to moderate size in painted sample pairs at five CIE colour centers was estimated by grey scale assessment. Painted samples were produced for constant step width along the main axes of previously determined threshold (x,y,Y)‐ellipsoids with lightness variation at constant (x,y)‐chromaticity starting with threshold length and enlarging it five times for moderate magnitude of colour difference. Pairs were formed for linear extensions along axes and for diagonal combinations at equal step width between axes. The model under test assumes additive linear scale extension in constant proportions of the threshold (x,y,Y)‐ellipsoid for increasing magnitude of perceived colour difference and correlates perceptual main colour characters with main ellipsoid axes. Both assumptions were falsified to some degree: in general, magnitude of colour difference varies differently, though close to linear, and slightly subadditive for the three axes and for the different colour centers; the short (x,y)‐ellipse axis in some cases is not correlated with a perceptual hue vector component, and the main lightness direction sometimes is tilted in relation to the (x,y)‐plane. Three colour‐difference formulae do not provide better global predictions than the local (x,y,Y)‐ellipsoid formulae. The results may be used for more detailed modeling of colour‐difference formulae and for tolerance settings at different ranges of colour difference. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 78–92, 1999  相似文献   

13.
This study investigates harmony in two‐colour combinations in order to develop a quantitative model. A total of 1431 colour pairs were used as stimuli in a psychophysical experiment for the visual assessment of harmony. These colour pairs were generated using 54 colours selected systematically from CIELAB colour space. During the experiment, observers were presented with colour pairs displayed individually against a medium gray background on a cathode ray tube monitor in a darkened room. Colour harmony was assessed for each colour pair using a 10‐category scale ranging from “extremely harmonious” to “extremely disharmonious.” The experimental results showed a general pattern of two‐colour harmony, from which a quantitative model was developed and principles for creating harmony were derived. This model was tested using an independent psychophysical data set and the results showed satisfactory performance for model prediction. The study also discusses critical issues including the definition of colour harmony, the relationship between harmony and pleasantness, and the relationship between harmony and order in colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 191–204, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20208  相似文献   

14.
The CIE 1976 colour spaces, CIELUV and CIELAB, have been compared by recalculating the results of a number of reported sets of experimental data. These include the results of just-noticeable-difference observations, colour difference scaling, colour matching ellipses, and acceptability ellipses. As a means of representing the colour difference data uniformly, it is shown that neither colour space is significantly better than the other. Attention is drawn to some anomalies in the CIELAB space.  相似文献   

15.
As a tribute to Claudio Oleari (1944‐2018), in this article we remember some of his ideas about the role of physics and engineering in modern colour science. In particular, we consider his emphasis on the strong content of the work carried out during 1947‐1974 by the Committee on Uniform Scales of the Optical Society of America. Oleari considered the Optical Society of America Uniform Color Scales system a very useful basis for new developments in colour science, including approximately uniform colour spaces, colour difference formulae and chromatic adaptation transforms. Papers published by Oleari and colleagues constitute an original alternative approach to the current generalised assumption of CIELAB made by most researchers and practitioners of colour science. We should seek a deeper understanding of colour vision to allow the development of new colour spaces, in which colour appearance could be more neatly expressed.  相似文献   

16.
The texture effect on visual colour difference evaluation was investigated in this study. Five colour centers were selected and textured colour pairs were generated using scanned textile woven fabrics and colour‐mapping technique. The textured and solid colour pairs were then displayed on a characterized cathode ray tube (CRT) monitor for colour difference evaluation. The colour difference values for the pairs with texture patterns are equal to 5.0 CIELAB units in lightness direction. The texture level was represented by the half‐width of histogram, which is called texture strength in this study. High correlation was found between texture strength and visual colour difference for textured colour pairs, which indicates that an increasing of 10 units of texture strength in luminance would cause a decreasing of 0.25 units visual difference for the five colour centers. The ratio of visual difference between textured and solid colour pairs also indicates a high parametric effect of texture. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 341–347, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.  相似文献   

17.
We propose a method for identifying a set of colours for displaying 2D and 3D categorical images when the categories are unordered labels. The principle is to find maximally distinct sets of colours. We either generate colours sequentially, to maximize the dissimilarity or distance between a new colour and the set of colours already chosen, or use a simulated annealing algorithm to find a set of colours of specified size. In both cases, we use a Euclidean metric on the perceptual colour space, CIELAB, to specify distances. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 304–309, 2007  相似文献   

18.
The aim of this study was to develop psychophysical models that predict the influence of pack colours on consumers' psychological responses of fruit juices, such as visually perceived expectations of freshness, quality, liking, and colour harmony. Two existing colour harmony models derived from experiments involving only uniform colour plaques were tested using the juice packaging experimental data. Both models failed to predict the visual results obtained. Nevertheless, two parameters relevant to chromatic difference and hue difference were somewhat associated with the visual results. This suggested that, among all colour harmony principles for uniform colours, only the equal‐hue and the equal‐chroma principles can be adopted to describe colour harmony of packaging used for juice. This has the implication that the principles of colour harmony may vary according to the context in which the colours are used. A new colour harmony model was developed for juice packaging, and a predictive model of freshness was derived. Both models adopted CIELAB colour attributes of the package colour and the fruit image colour to predict viewers' responses. Expected liking and juice quality can be predicted using the colour harmony model while expected freshness can be predicted using the predictive model of freshness. © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 157–168, 2015  相似文献   

19.
The formulation of a metric to provide numbers that correlate with visually perceived colour differences has proved a very difficult task. Most early experimental work was concerned with just-perceptible colour differences. Later the concept of perceptibility was expanded to acceptability, it being argued that many industrial tolerances were larger than just-perceptible. This led naturally to the concept of large colour differences and the question as to whether the current CIE colour-difference formulae, specified as appropriate for just-perceptible differences, can be applied to larger differences than those concerned with, for instance, colour matches experienced in the fabric dyeing industry. This article investigates the application of four colour-difference formulae to visual scaling of large colour differences between photographically prepared reflection colour samples at approximately constant lightness. It is shown that the scaling of colour differences depends on the directions of hue and chroma differences of a test sample when compared with a reference. It is also shown that, of the four candidate colour-difference metrics, the modified CIE 1976 L*a*b* colour difference, referred to as CIE1994 or , correlates best with visual scaling. © 1997 John Wiley & Sons, Inc. Col Res Appl, 22, 298–307, 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号