首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of a novel high-rate anaerobic process, the anaerobic digestion elutriated phased treatment (ADEPT) process, for treating a slurry-type piggery waste (55 g COD/L and 37 g TS/L) was investigated. The ADEPT process consists of an acid elutriation slurry reactor for hydrolysis and acidification, followed by an upflow anaerobic sludge bed reactor for methanification. This process provides stable and high system performance with short HRT (7.4 d) and better effluent quality (2 g SCOD/L and 0.68 g VSS/L) due to the alkaline pH condition for hydrolysis/acidification phase, high refractory solids removal and ammonia toxicity reduction. The optimum pH and HRT for hydrolysis/acidogenesis of the piggery waste were 9 and 5 days at both 35 degrees C and 55 degrees C conditions. The hydrolysis and acidification rate in the mesophilic reactor were 0.05 d(-1) and 0.11 d(-1), meaning that hydrolysis was a limiting step. SCOD production by the hydrolysis was about 0.26 g SCOD/g VS(fed) (3.6 g SCOD/g VS reduction). Methane production and content in the system were 0.3 L CH4/g VS(fed) (0.67 L CH4/g VS destroyed) and 80%, respectively, corresponding to 0.23 L CH4/g COD removal (@STP).  相似文献   

2.
In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m(3) was operated at ambient temperature (16-29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.  相似文献   

3.
Results of three semi-continuous anaerobic tests were reported and discussed. Each test was carried out by two parallel anaerobic reactors fed with waste activated sludge, either as it was sampled from the sewage treatment plant of Rome North or previously disintegrated by ultra-sound treatment. Activated sludge was sonicated at the energy input of 5,000 or 2,500 kJ kg(-1) dry solids corresponding to a disintegration degree of approximately 8 or 4%, respectively. Sonication proved to be effective both in increasing VS destruction and cumulative biogas production. The best increase of VS destruction (from 30 to 35%) was achieved in test #3 carried out at high organic load (10 d residence time) and low energy input (2,500 kJ kg(-1) dry solids). The best increase in cumulative biogas production (from 472 to 640 NL after 67 d of tests i.e.) was obtained in test #1 at low organic load (20 d residence time) and high energy input (5,000 kJ kg(-1) dry solids). Specific biogas production varied in the tests carried out with untreated sludge (0.55 - 0.67 Nm3 kg(-1) VS destroyed) but was practically unchanged for all the tests with sonicated sludge (0.7 Nm3 kg(-1) VS destroyed).  相似文献   

4.
The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical conditions was assessed for both stability and specific methanogenic activity. Stability of primary sludge from settling tanks and digested sludge from conventional sludge digesters was also measured for comparison purposes. Kinetic parameters like the hydrolysis rate constant and the decay rate constant were calculated. High stability was observed in sludge from UASB reactors. Methanogenic activity in anaerobic sludges was relatively low, probably due to the low organic matter concentration in influent sewage. Knowledge on sludge growth rate, stability, and activity might be very useful to optimize sludge management activities in full-scale UASB reactors.  相似文献   

5.
Many novel treatment technologies, usually representing a pre-treatment prior to the biological degradation process, have been developed in order to improve the recycling and reuse of sewage sludge. Among all the methods available, a chemical (alkaline) and a thermal treatment have been considered in this study. The behaviour of 13 substances belonging to different therapeutic classes (musks, tranquillisers, antiepileptic, anti-inflammatories, antibiotics, X-ray contrast media and estrogens) has been studied during the anaerobic digestion of sewage sludge combined with these pre-treatments (advanced operation) in comparison with the conventional process. Two parameters have been analysed: the temperature (mesophilic and thermophilic conditions) and the sludge retention time. While organic matter solubilization was higher with the alkaline process (55-80%), no difference between both pre-treatments was observed concerning volatile solids solubilization (up to 20%). The removal efficiencies of solids and organic matter during anaerobic digestion ranged from 40-70% and 45-75%, respectively. The higher removal efficiencies of pharmaceuticals and personal care products were achieved for the antibiotics, Naproxen and the natural estrogens (>80%). For the other compounds, the values were in the range 20-70%, except for Carbamazepine, which was not removed at any condition tested.  相似文献   

6.
A laboratory experimental campaign was carried out in order to assess the optimal configuration for the anaerobic digestion of a mixture of sweet corn and ensiled maize. Batch hydrolysis tests were conducted at 35 and 55 °C and at four different particle sizes (2, 5, 20 and 50 mm) obtained by manual chopping and sieving. Chemical pre-treatment by 24 h incubation at various acid and alkaline pH was also considered for its potential to increase the maize methane yield. Results suggest that the hydrolytic phase proceeds significantly faster under thermophilic conditions. Significant differences in the solubilization rate were also observed when comparing coarse (20-50 mm) with fine (2-5 mm) particles, while 2 and 5 mm particles were solubilized at similar rates. No advantages from the chemical pre-treatment, in terms of solubilization efficiency and biomethanization potential were observed. According to these preliminary results, a two-stage semi-continuous laboratory plant consisting of a thermophilic hydrolytic reactor followed by a mesophilic methanogenic reactor was operated for 110 days. Steady state loading parameters were: influent concentration (maize mixture diluted in tap water) of 46 g VS/L, hydraulic retention time of 31 d, organic loading rate of 1.5 g VS/L/d. Alkalinity was dosed to the methanogenic reactor to avoid pH drops. Collected data allowed the average biodegradation efficiency to be estimated at around 60-65%.  相似文献   

7.
This research integrates two different concepts of anaerobic biotechnology- two-phase anaerobic treatment and anaerobic granular sludge bed technology, in treatment of colored wastewaters from textile industries. Four anaerobic reactors based on upflow anaerobic sludge blanket (UASB) technology were used as acid reactors and an expanded granular sludge bed (EGSB) reactor was used as a methane reactor. A conventional single-phase anaerobic reactor, working on EGSB technology was run in parallel to compare the performances of the two systems. Reactors were operated at different hydraulic retention times. The results from the study, which span over a period of 400 days, indicated that the two-phase system produces a higher quality of effluent in terms of color, COD and suspended solids than single-phase anaerobic treatment when operated under similar conditions. Alkalinity requirement of two-phase system was also observed to be lower than that of single-phase system which is important regarding design consideration.  相似文献   

8.
Anaerobic digestion of concentrated domestic wastewater streams--black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR--decentralised sanitation and reuse). A simple anaerobic digester can be implemented for an enhanced primary treatment or, in some situations, as a main treatment. Two reactor configurations were extensively studied; accumulation system (AC) and UASB septic tank at 15, 20 and 25 degrees C. Due to long retention times in an AC reactor, far stabilisation of treated medium can be accomplished with methanisation up to 60%. The AC systems are the most suitable to apply when the volume of waste to be treated is minimal and when a direct reuse of a treated medium in agriculture is possible. Digested effluent contains both liquid and solids. In a UASB septic tank, efficient separation of solids and liquid is accomplished. The total COD removal was above 80% at 25 degrees C. The effluent contains COD and nutrients, mainly in a soluble form. The frequency of excess sludge removal is low and sludge is well stabilised due to a long accumulation time.  相似文献   

9.
Anaerobic technologies have proved successful in the treatment of various high strength wastewaters with perceptible advantages over aerobic systems. The applicability of anaerobic processes to treat low strength wastewaters has been increasing with the evolution of high-rate reactors capable of achieving high sludge retention time (SRT) when operating at low HRT. However, the performance of these systems can be affected by high variations in flow and wastewater composition. This paper reports on the comparative study carried out with two such high rate reactors systems to evaluate their performances when used for the treatment of low strength wastewaters at high hydraulic rates. One of the two systems is the most commonly used upflow anaerobic sludge blanket (UASB) reactor in which all reactions occur within a single vessel. The other is the granular bed baffled reactor (GRABBR) that encourages different stages of anaerobic digestion in separate vessels longitudinally across the reactor. The reactors, with equal capacity of 10 litres, were subjected to increasing organic loading rates (OLRs) and hydraulic retention times (HRTs) of up to 60 kg COD m(-3) d(-1) and 1 h respectively. Results show that the GRABBR has greater processes stability at relatively low HRTs, whilst the UASB seems to be better equipped to cope with organic overloads or shockloads. The study also shows that the GRABBR enables the harvesting of biogas with greater energetic value and hence greater re-use potential than the UASB. Biogas of up to 86% methane content is obtainable with GRABBR treating low strength wastewaters.  相似文献   

10.
The performance of an upflow anaerobic sludge blanket (UASB) reactor and a hybrid UASB-filter reactor was investigated and compared for the treatment of domestic wastewater at different operational temperatures (28, 20, 14 and 10 degrees C) and loading rates. For each temperature studied a constant CODt removal was observed as long as the upflow velocity was lower than 0.35 m/h. At these upflow velocities similar removals were observed for both reactor types at 28 and 20 degrees C, 82 and 72% respectively. However, at 14 and 10 degrees C the UASB reactor showed a better COD removal (70% and 48%, respectively) than the hybrid reactor (60% and 38%). COD removal resulted from biological degradation and solids accumulation in the reactors. At 28 degrees C, a constant 200 g sludge mass was observed in both reactors and COD removal was attributed to biological degradation only. At lower temperatures, solids accumulation was observed in addition to biological degradation with an increase in reactor sludge as the temperature decreased. The decrease in biological degradation at lower temperatures was offset by solids accumulation and explains the similar overall COD removal efficiency observed at 28 degrees C, 20 degrees C and 14 degrees C. The decrease in temperature was also followed by an increase in the effluent TSS concentration in both reactors. At 14 and 10 degrees C a lower effluent TSS concentration and better performance was observed in the UASB reactor.  相似文献   

11.
Biotechnology for intensive aerobic bioconversion of sewage sludge and food waste into fertilizer was developed. The wastes were treated in a closed reactor under controlled aeration, stirring, pH, and temperature at 60 degrees C, after addition of starter bacterial culture Bacillus thermoamylovorans. The biodegradation of sewage sludge was studied by decrease of volatile solids (VS), content of organic carbon and autofluorescence of coenzyme F420. The degradation of anaerobic biomass was faster than biodegradation of total organic matter. The best fertilizer was obtained when sewage sludge was thermally pre-treated, mixed with food waste, chalk, and artificial bulking agent. The content of volatile solid and the content of organic carbon decreased at 24.8% and 13.5% of total solids, respectively, during ten days of bioconversion. The fertilizer was a powder with moisture content of 5%. It was stable, and not toxic for the germination of plant seeds. Addition of 1.0 to 1.5% of this fertilizer to the subsoil increased the growth of different plants tested by 113 to 164%. The biotechnology can be applied in larger scale for the recycling of sewage sludge and food wastes in Singapore.  相似文献   

12.
The process of anaerobic thermophilic digestion of municipal wastewater sludge with a recycled part of thickened digested sludge, was studied in semi-continuous laboratory digesters. This modified recycling process resulted in increased solids retention time (SRT) with the same hydraulic retention time (HRT) as compared with traditional digestion without recycling. Increased SRT without increasing of HRT resulted in the enhancement of volatile substance reduction by up to 68% in the reactor with the recycling process compared with 34% in a control conventional reactor. Biogas production was intensified from 0.3 L/g of influent volatile solids (VS) in the control reactor up to 0.35 L/g VS. In addition, the recycling process improved the dewatering properties of digested sludge.  相似文献   

13.
The main current trends in final disposal of sludge from Wastewater Treatment Plants (WTP) include: safe use of nutrients and organic matter in agriculture, sludge disinfection and restricted use in landfill. As to sludge hygienization, helminth eggs have been used as a major parameter to determine the effectiveness of such process, and its inactivation can be reached by means of thermal treatment, under varying temperature and other conditions. In such context, the objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of calorific energy for the thermal hygienization of excess anaerobic sludge, with Ascaris lumbricoides eggs being used as indicator microorganisms, and whether the system can operate on a self-sustained basis. The experiments were conducted in a pilot-scale plant comprising one UASB reactor, two biogas holders and one thermal reactor. The investigation proved to be of extreme importance to developing countries, since it leads to a simplified and fully self-sustainable solution for sludge hygienization, while making it possible to reuse such material for agricultural purposes. It should be also noted that using biogas from UASB reactors is more than sufficient to accomplish the thermal hygienization of all excess sludge produced by this system, when used for treating domestic sewage.  相似文献   

14.
The potential of anaerobic digestion in ecological and decentralised sanitation has been investigated in this research. Different anaerobic digestion systems were proposed for the treatment of sewage, grey water, black water and faeces. Moreover, mathematical models based on anaerobic digestion model no.1 (ADM1) were developed for determination of a suitable design for each system. For stable performance of an upflow anaerobic sludge blanket (UASB) reactor treating sewage, the model results indicated that optimisation of wastewater conversion to biogas (not COD removal) should be selected for determination of the hydraulic retention time (HRT) of the reactor. For the treatment of sewage or black water in a UASB septic-tank, the model results showed that the sludge removal period was the main parameter for determination of the HRT. At such HRT, both COD removal and wastewater conversion are also optimised. The model results demonstrated that for treatment of faeces in an accumulation (AC) system at temperature > or = 25 degrees C, the filling period of the system should be higher than 60 days. For maximisation of the net biogas production (i.e. reduction of biogas losses as dissolved in the effluent), the separation between grey water, urine and faeces and reduction of water consumption for faeces flushing are required. Furthermore, the faeces and kitchen organic wastes and grey water are digested in, respectively, an AC system and UASB reactor, while the urine is stored.  相似文献   

15.
Enzymatic hydrolysis under different electron acceptor conditions in nutrient removal activated sludge treatment processes is a weak link in the Activated Sludge Model no. 2 (Henze et al., 1995). An experimental study was undertaken to gain insight into the hydrolysis process with specific focus on hydrolysis kinetics and rates under different electron acceptor conditions. Two pure cultures, Bacillus amyloliquefaciens (Gram positive) and Pseudomonas saccharophila (Gram negative) were chosen for the study. In addition, activated sludge grown in an anaerobic-aerobic system was tested for enzymatic activity using starch as the model substrate. The hydrolytic enzymes were found to be released into the bulk in pure cultures whereas the enzyme activity was found to be mainly associated with the cell surfaces in activated sludge. Further, it was observed that the development of the hydrolytic enzyme system in Bacillus amyloliquefaciens and P. saccharophila is strongly suppressed under anoxic and anaerobic conditions. However, the effect of anaerobic and aerobic incubation on hydrolytic enzyme activity in activated sludge was found to be small. Starch hydrolysis kinetic data from batch experiments with activated sludge followed substrate saturation kinetics that were linear with biomass concentration. Finally, the similar hydrolytic enzyme activities observed under anaerobic and aerobic phases of a sequencing batch reactor are explained by considering the aspects of enzyme location and enzyme system development under aerobic and anaerobic phases. It is proposed that the floc bound enzymes are recycled in a single sludge system so that an equilibrium exists between enzyme loss and synthesis at steady state.  相似文献   

16.
At the present time, organic solid wastes from industries and agricultural activities are considered to be promising substrates for biogas production via anaerobic digestion. Moreover solids stabilisation is required before reutilization or disposal. Slaughterhouses are among the most important industries in Uruguay and produce 150,000 tons of ruminal content (RC) and 30,000 tons of blood per year. In order to determine the influence of the solids and blood contents, the ammonia inhibition and the inoculum adaptation co-digestion batch tests were performed. A set of experiences with TS concentration of 2.5%, 5% and 7.5% and different ratios of RC/blood were carried out using an inoculum from an UASB reactor. In all experiences fast blood hydrolisation was observed. A higher methane production was detected in the experiences with higher TS content. However, the fraction of solids degradation was lower in these experiences. A plateau in the biogas production was found. The free ammonia level, which was above the reported inhibitory levels, could explain this behaviour. After the inhibition period the biogas production restarted probably due to the biomass acclimatisation to the ammonia. In order to determine the inoculum adaptation a new experiment was performed. The inoculum used was the sludge coming from the first set of experiences. Based upon batch tests a 3.5 m3 pilot reactor was designed and started up. Ammonia inhibition was avoided by the start-up strategy and in two weeks the biogas production was 3.5 m3/d. The VS stabilisation with a solid retention time of 20 days was of 43%. The pilot reactor working at steady state had a TS concentration of 3-4% with a ratio of RC/blood of 10:1 at the entrance.  相似文献   

17.
This study was undertaken to determine the feasibility of caustic and heat treatment of sludge from a dry anaerobic reactor (DAR) with respect to increased methane production and solids destruction. The DAR was operated semi-continuously at 55 degrees C on sized-reduced municipal solid waste at a solids retention time of 15 days. A respirometer was employed to monitor the extent and rate of methane production from anaerobic biodegradation of DAR sludge that was treated with caustic and heat. Results indicate that caustic and heat treatment at 50 degrees C and 175 degrees C increased methane production by 22% and 52%, respectively. Also, volatile solids destruction increased from 46% to 58% and 83%, respectively. Based on these results, economic analysis for a full-scale 10(5) kg/d facility suggests that annual project revenue for 50 degrees C and 175 degrees C treatment is estimated at $21,000 and $445,000, respectively.  相似文献   

18.
The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.  相似文献   

19.
In recent years, relevant interest has been devoted to activated sludge disintegration and solubilisation techniques in order to cope with the biological limitations related to particulate degradation. Mechanical disintegration with ultrasound can efficiently transform insoluble organics into a soluble form: the solubilised organic matter is released from the cells to the bulk phase, thus accelerating the hydrolysis step in the digestion process. Experiments were carried out on bench scale anaerobic reactors fed with either untreated or disintegrated excess sludge, added with a biomass inoculum taken from a full scale anaerobic digester. Digestion tests have been carried out at different feed/inoculum ratios (F/I) in the range of 0.1-2, kinetics of VS reduction has been investigated and a beneficial effect of sonication is observed for all the experimental conditions. Similar beneficial results have also been found for biogas production with a maximum gain of 25% at 0.5 F/I ratio.  相似文献   

20.
High rate anaerobic technologies offer cost-effective solutions for "sewage" treatment in the temperate climate of Palestine and Jordan. However, local sewage characteristics demand amendments to the conventional UASB reactor design. A solution is found in a parallel operating digester unit that stabilises incoming solids and enriches the UASB sludge bed with methanogenic activity. The digester operational conditions were assessed by operating eight CSTRs fed with primary sludge. The results showed a high degree of sludge stabilization in the parallel digesters at SRTs>or=10 and 15 days at process temperatures of 35 and 25 degrees C, respectively. The technical feasibility of the UASB-digester combination was demonstrated by continuous flow pilot-scale experiments. A pilot UASB reactor was operated for 81 days at 6 hours HRT and 15 degrees C and was fed with raw domestic sewage. This period was subsequently followed by an 83 day operation period incorporating a parallel digester unit, which was operated at 35 degrees C. The UASB-digester combination achieved removal efficiencies of total, suspended, colloidal and dissolved CODs of respectively 66, 87, 44 and 30%. Preliminary model calculations indicated that a total reactor volume of the UASB-digester system corresponding to 8.6 hours HRT might suffice for sewage treatment in Palestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号