首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《功能材料》2012,43(13)
采用高温固相法制备了KNaCa2(PO4)2:Dy3+发光材料并对其发光特性进行了研究。光谱显示,KNaCa2(PO4)2:Dy3+激发谱为300~500nm范围内的一系列锐谱,可被InGaN管芯和蓝光有效激发。尤其在385nm紫外光激发下,样品呈现较强白光发射,主发射峰位于485和577nm,对应Dy3+的。F9/2-6H15/2、4F9/2-6H13/2跃迁,形成“黄+蓝”单一基质白光。研究了Dy3+掺杂浓度对KNaCa2(PO4)2:Dy3+发光性能的影响,随Dy3+浓度增加,发光强度先增大后减小,最佳掺杂浓度为0.04mol,Y/B值在较小范围内先增大后减小。根据Dexter理论分析其浓度猝灭机理为电偶极一电偶极相互作用。测量并标定了Dy抖不同浓度下样品的色坐标均呈现白光发射。研究表明,KNaCa2(PO4)2:Dy3+材料是一种适合紫外-近紫外-蓝光激发的单一基质白光荧光粉。  相似文献   

2.
Eu2+在KNaCa2(PO42中的发光及晶体学格位   总被引:2,自引:0,他引:2  
采用高温固相法制备了KNaCa2(PO4)2:Eu2+蓝色荧光粉,并研究了材料的发光特性.在400 nm近紫外光激发下,材料呈非对称的单峰发射,主峰位于470 nm.监测470 nm发射峰,对应的激发光谱覆盖200~450 nm,主峰位于400 nm,说明材料能够很好的吸收紫外?近紫外光,发射蓝色光.利用van Uitert公式计算了Eu2+取代KNaCa2(PO4)2中Ca2+时所占晶体学格位,得出461和502 nm发射分别归属于八配位和六配位的Eu2+发射.研究了Eu2+掺杂浓度对KNaCa2(PO4)2:Eu2+材料发射强度的影响,结果显示Eu2+的最佳掺杂浓度为1mol%,利用Dexter理论得出其浓度猝灭机理为电偶极?电偶极相互作用.  相似文献   

3.
游潘丽 《材料导报》2014,(16):32-36
通过高温固相反应制备Ba2Gd2Si4O13∶Dy3+发光材料,利用XRD、FTIR、SEM、XPS和激发-发射光谱表征合成样品的性能。研究表明,使用Li2CO3-NH4F复合助熔剂,形成了长柱状形貌。在349nm或274nm激发下,Ba2Gd2Si4O13∶Dy3+发出Dy3+特征峰,色坐标接近白光区域。Gd3+→Dy3+的能量传递增强了Dy3+发光强度。Dy3+最优的掺杂浓度为2%,临界传输距离为30。Ba2Gd2Si4O13∶Dy3+发光材料可作为潜在的单一掺杂单一组成的白光LED发光材料。  相似文献   

4.
宁青菊  郭芳芳  乔畅君 《功能材料》2013,44(14):1995-1997,2002
采用溶胶-凝胶法在较低温度下合成了不同浓度Tb3+掺杂的Ca2SiO3Cl2∶mTb3+单一基质白光荧光粉,并对其发光性质进行了研究。近紫外光激发下,发射光谱出现了明显的多色谱(415、440、460、486、544、595、619和700 nm)混合后发射白光。随着Tb3+浓度的增加,蓝光强度先增强后减弱,绿光不断增强,红光不断减弱,当m=0.003时荧光粉的色坐标为x=0.3174,y=0.3485,非常接近标准白光(x=0.33,y=0.33),样品呈现色温TC=6161K的正白色发光。Ca2SiO3Cl2∶Tb3+是一种具有良好白光发射的LED用单一基质荧光粉。  相似文献   

5.
采用溶胶-凝胶法合成了发射白光的Ca2SiO3Cl2∶Dy3+荧光粉。利用XRD分析了荧光粉的晶体结构,其为四方晶系。在350nm近紫外光激发下,荧光粉呈白光发射,有两个主发射峰位分别于482和573nm,分别对应于Dy3+的4F9/2→6H15/2和4F9/2→6H13/2跃迁;监测573nm最强发射峰,激发光谱覆盖200~450nm,主激发峰位于350nm。研究结果表明保温时间的延长有利于发射强度的提高,伴随着Dy3+浓度的增大,发射光谱图中的两个主发射峰先增强后减弱,Dy3+的最佳浓度为2%(摩尔分数)。  相似文献   

6.
游潘丽 《材料导报》2014,28(24):22-25
利用高温固相反应合成了Ba2Gd2Si4O13∶Dy3+荧光粉,从激发光谱、发射光谱、衰减寿命3个方面详细研究了不同激发波长下Gd3+→Dy3+的能量传递和热稳定性能。研究表明,由于Ba2Gd2Si4O13基质中Gd3+→Dy3+的能量传递,Dy3+在274nm激发的发光强度是在349nm激发的5倍;Ba2Gd2Si4O13∶Dy3+荧光粉表现出较好的热稳定性,在250℃的发光强度为常温的85%;随着加热温度的升高,兰光比黄光强度下降更多,而Gd3+发光有所增加。Ba2Gd2Si4O13∶Dy3+荧光粉可作为潜在的单一基质单一掺杂发光材料。  相似文献   

7.
游潘丽 《材料导报》2014,(20):22-25
利用高温固相反应合成了Ba2Gd2Si4O13∶Dy3+荧光粉,从激发光谱、发射光谱、衰减寿命3个方面详细研究了不同激发波长下Gd3+→Dy3+的能量传递和热稳定性能。研究表明,由于Ba2Gd2Si4O13基质中Gd3+→Dy3+的能量传递,Dy3+在274nm激发的发光强度是在349nm激发的5倍;Ba2Gd2Si4O13∶Dy3+荧光粉表现出较好的热稳定性,在250℃的发光强度为常温的85%;随着加热温度的升高,兰光比黄光强度下降更多,而Gd3+发光有所增加。Ba2Gd2Si4O13∶Dy3+荧光粉可作为潜在的单一基质单一掺杂发光材料。  相似文献   

8.
高温固相法合成了Ca10-xK(PO4)7:xEu3+(x=0.02,0.04,0.06,0.08,0.10,0.12,0.14和0.16)的红色荧光粉。X射线衍射表明,样品具有标准的Ca10K(PO4)7六角晶体结构,且无第二相存在。在393nm的波长激发下,样品获得由Eu3+的4f-4f跃迁产生红光发射,其中以613nm附近的5 D0→7F2电偶极跃迁发射为最强。通过调节Eu3+的掺杂浓度,获得了色坐标与商业化Y2O2S:Eu3+荧光粉十分接近的接近纯色的红色荧光粉。Ca10K(PO4)7:Eu3+是一种可望应用于紫外激发的白光LED的红色荧光粉。  相似文献   

9.
Li、Eu掺杂NaY(WO42荧光粉的合成与红色发光   总被引:1,自引:0,他引:1  
利用固相法合成了Li+、Eu3+掺杂的NaY(WO4)2红色荧光粉,并且用X射线粉末衍射仪和紫外-可见光谱仪进行了表征。研究发现纯相产物可以在1100℃下制备,然而稳定存在的温度区间仅约100℃。和已报道的燃烧法产物不同,Eu3+掺杂产物的发光性质证实了浓度猝灭现象的存在,掺杂9mol%时发光最强,有效激发波长是393 nm,发射光谱体现为高选择性的Eu3+的5D0→7F2电偶极跃迁,因此适合于解决白光LED中缺乏红光成分的问题。Li+掺杂既没有改变Eu3+红光发射的择优性,又能够调节发光强度。研究发现合适的Li+浓度可以增强发光,但是浓度过大或过小对发光不利,掺杂30mol%时发光最强。这种变化规律可以归因于点阵缺陷增加和Y原子格位不对称性增强对发光强度的不同影响之间竞争的结果。  相似文献   

10.
采用高温熔融法制备了Sm3+/Ce3+/Tb3+共掺杂的CaO-B2O3-SiO2发光玻璃材料,并用荧光分光光度计和CIE色度坐标对其发光性能进行了研究。发射光谱表明,在374nm激发下,Sm3+/Ce3+/Tb3+共掺杂CaO-B2O3-SiO2发光玻璃的发射光谱中同时观测到了红橙光、蓝光和绿光的发射带,这些发射带的混合实现了白光发射。此外,在Sm2O3和Tb4O7含量不变的情况下,随着CeO2含量的减小,Sm3+/Ce3+/Tb3+共掺杂发光玻璃的发光颜色在白光区逐渐由蓝光区附近过渡到黄光区附近。  相似文献   

11.
采用液相沉淀法制备了不同掺杂浓度和尺寸的ZrO2和ZrO2Dy纳米晶,研究了其发光特性.结果表明在纳米ZrO2中,存在着宽带激发和发射,起源为电子在价带和导带之间的跃迁.在Dy3+掺杂的样品中,随着颗粒尺寸的长大,其发光增强.并且共掺杂Li+的样品发光强度被极大地提高.随着Dy3+浓度的变化,黄发射和蓝发射的强度比(Y/B)发生改变,且浓度猝灭是通过近邻激活剂间的交换作用进行的.  相似文献   

12.
采用熔盐法成功合成了Ba3-x(VO4)2:xSm3+(x=0.02~0.16)一系列荧光粉,探讨了合成条件、Sm3+掺杂对样品结构和发光性能的影响,并探究了样品的温度传感性能。结果表明:合成样品的适宜反应条件是煅烧温度为900℃、煅烧时间为1 h、原料与熔盐质量比为1∶3,所得样品相纯度和结晶度均较高。样品微观形貌呈片状,厚度约1.5~3 mm。在318 nm激发下,Ba3-x(VO4)2:xSm3+的发射光谱中可同时观察到VO43-基团的宽带发射和Sm3+的特征发射,样品的发光颜色集中在黄白光区域。随着Sm3+掺杂浓度(x)从0.02增大到0.16,Sm3+的特征发射峰强度呈现出先升后降的变化趋势,当x=0.10时,发射峰强度达到最高值。导致其浓度猝灭的主要原因是电偶极-电偶极(...  相似文献   

13.
采用Gd2O3、Dy2O3、H2SO4和NaOH为实验原料,通过共沉淀法合成了Gd2O2SO4∶Dy3+纳米粉体。利用X射线衍射(XRD)、透射电子显微镜(TEM)和光致发光(PL)光谱等手段对合成的粉体进行了表征。XRD分析表明前躯体在空气气氛下900℃煅烧2h能转化成纯相的Gd2O2SO4∶Dy3+。TEM观察显示Gd2O2SO4∶Dy3+粉体形貌为近球形,分散性良好,粒度大小为20~40nm。PL光谱分析表明在277nm紫外光激发下,Gd2O2SO4∶Dy3+的主次发射峰分别位于575nm(黄光)和485nm(蓝光),分别归属于Dy3+的4F9/2→6H13/2和4F9/2→6H15/2跃迁。Dy3+的猝灭浓度是2%(摩尔分数),猝灭机理是由于Dy3+和Dy3+之间的交换相互作用。余辉光谱研究表明Dy3+的4F9/2→6H13/2和4F9/2→6H15/2跃迁均具有e单指数衰减行为,荧光寿命分别为0.468和0.462ms。  相似文献   

14.
采用固相法成功合成了具有β-Ca3(PO4)2结构的发光材料Ca8MgY(PO4)7∶Re3+(Re3+=Eu3+,Ce3+,Tb3+)。XRD、FT-IR及TG-DSC的测试结果表明,该发光材料的最佳烧结温度为1 200℃。PL测试结果表明,在252nm紫外光激发下,Ca8MgY(PO4)7∶Eu3+呈现Eu3+的特征发射,其中以位于612nm红光发射为主(5D0-7F2),Eu3+的最佳掺杂浓度为5.0%(摩尔分数)。在295nm紫外光激发下,Ce3+激活的Ca8MgY(PO4)7由峰值位于363nm的带状5d1-4f1发射为主,Ce3+的最佳掺杂浓度为1.0%(摩尔分数)。在228nm紫外光激发下,低掺杂浓度的Ca8MgY(PO4)7∶Tb3+以位于5D3-7FJ的蓝光发射为主,高掺杂浓度的Ca8MgY(PO4)7∶Tb3+以5D4-7FJ绿光发射为主,这是由于Tb3+的交叉弛豫造成的。Tb3+的最佳掺杂浓度为7.0%(摩尔分数)。  相似文献   

15.
采用高温固相反应法合成Sr2-x-yB5O9Cl:xEu2+,yTb3+蓝色荧光粉。用X射线衍射表征材料的晶体结构、用荧光光谱仪测定Eu2+和Tb3+的掺杂浓度,研究了助溶剂H3BO3过量浓度和反应温度对荧光粉发光性质的影响。结果表明,单掺杂Eu2+时,其浓度猝灭机理为电偶极-电偶极交互作用机制,浓度猝灭临界距离为RC=1.71 nm。在紫外(230-410 nm)波段有强而宽的吸收带,表明此粉是一种近紫外白光LED用的蓝色荧光粉。  相似文献   

16.
采用高温固相反应法制备了一系列白光LED用CaSi2O2N2:0.05Eu2+,xDy3+,xLi+(0≤x≤0.03)荧光粉.利用X射线衍射仪对样品的物相结构进行了分析,结果表明:Dy3+和Li+离子的掺入没有改变CaSi2O2N2:Eu2+荧光粉的主晶相.利用荧光光谱仪对样品的发光性能进行了测试,发现所有样品的激发光谱均覆盖了从近紫外到蓝光的较宽范围,400 nm激发下得到的发射光谱为宽波段的单峰,峰值位于545 nm左右,是Eu2+离子5d-4f电子跃迁引起的.Dy3+离子掺杂可以提高CaSi2O2N2:Eu2+荧光粉的发光强度,Dy3+与Li+共掺杂可进一步提高荧光粉的发光强度,当Dy3+和Li+的掺杂量为1mol%时,荧光粉的发光强度达到最大值,是单掺杂Eu2+的荧光粉发光强度的157%.  相似文献   

17.
采用高温固相法制备了Na_3Gd_2(BO_3)_3∶Tb~(3+),Eu~(3+)荧光粉,并对样品的物相组成、微观形貌、发光性能和能量传递进行了分析。结果表明,Na_3Gd_(2-x)(BO_3)_3∶xTb~(3+)荧光粉在紫外和近紫外区域有较强的激发峰,在368nm波长激发下,发射光呈绿色,Tb~(3+)最佳掺杂量为x=0.04。随着在Na_3Gd_(1.96)(BO_3)_3∶0.04Tb~(3+)中掺入Eu~(3+),Tb~(3+)对Eu~(3+)产生了以电偶极-电偶极相互作用为主的能量传递,且传递效率随Eu~(3+)掺杂量的增加而逐渐增大。发射光谱中Tb~(3+)的发射峰强度逐渐减弱,而Eu~(3+)的发射峰强度逐渐增强,导致Na_3Gd_(1.96-y)(BO_3)_3∶0.04Tb~(3+),yEu~(3+)荧光粉发光颜色由绿色向橙色变化。  相似文献   

18.
用高温熔融法制备了掺杂Sm2O3的CaO-B2 O3-SiO2(CBS)发光玻璃材料,并对其光谱学特性进行了研究。紫外-可见(UV-Vis)吸收光谱表明Sm2O3掺杂发光玻璃在紫外区有较强吸收并在可见光区具有良好的透过率。光谱学测试表明,掺杂发光玻璃在404nm激发下出现Sm3+的特征发射峰,峰值波长分别位于565.8、602.8和650.4nm。同时,Sm2O3掺杂发光玻璃的荧光发射强度随Sm2O3掺杂摩尔分数的增加出现浓度猝灭效应,其Sm2O3掺杂猝灭浓度约为0.10%(摩尔分数)。此外,在365nm紫外光照射下,Sm2 O3掺杂发光玻璃呈现出红橙色发光,表明其具有将紫外光转换成红橙光的能力,可以进一步应用于光转换和光发射领域。  相似文献   

19.
采用溶胶-凝胶/燃烧合成法制备了不同Dy3+掺量的Y3Al5O12发光体.分析了基质晶体结构、Dy3+掺量、Re3+的电荷半径比(Z/r)对Dy3+发光强度及发光颜色的影响.结果表明,Dy3+:Y3Al5O12样品的激发主峰位于353nm(6H15/2→6P7/2)附近;由于Dy3+所占据的Y3+位置具有D2对称性,具有一个反演对称中心,使得Dy3+的发射光谱以481nm蓝光发射为发射主峰,但黄蓝光发射强度之比(Y/B)随Dy3+离子浓度的变化很小.  相似文献   

20.
采用固相法在相对较低的温度(~840℃)下合成了一种可被紫外光激发的蓝光发射荧光粉α-Ba_(3-x)P_4O_(13)∶xEu~(2+),详细研究了其物相、发光特性与荧光热稳定性。在360nm紫外光的激发下,样品的发射光谱由峰位处于~439nm的不对称宽带组成。通过激发与发射光谱、荧光寿命测试及结构分析证实该不对称宽峰是由于Eu~(2+)在Ba_3P_4O_(13)中同时占据多个不同的格位所致。此外,Eu~(2+)在α-Ba_3P_4O_(13)中的最佳掺杂浓度约为x=0.06,其荧光猝灭机理为电偶极矩-电偶极矩相互作用。与商用绿色荧光粉(Ba,Sr)_2SiO_4∶Eu~(2+)相比,该荧光粉具有更好的热稳定性。α-Ba_3P_4O_(13)∶Eu~(2+)荧光粉有望在紫外激发的白光LED领域得到应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号