首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We identified regions within the N-terminal extracellular domain of alpha7 nicotinic acetylcholine receptors that affect channel gating. By single-channel analysis of alpha7 nicotinic acetylcholine receptors currents, we show that the difference in efficacy between the two agonists acetylcholine and 1,1-dimethyl-4-phenylpiperazinium (DMPP) is due to a slower channel activation rate by DMPP. The partial efficacy of DMPP was not caused by channel block or faster desensitization of alpha7 AChRs by DMPP. In addition, the efficacy and, by inference, the activation rate were found to be voltage dependent. Using chimeras of the two closely related subunits alpha7 and alpha8, we map residues that affect channel activation rate and agonist affinity to two different regions of the extracellular domain. Residues that affect channel activation rate are within the sequence 1-179, whereas residues that affect agonist affinity are within the sequence 180-208.  相似文献   

2.
The effects of lanthanum (La3+) were studied on muscle and neuronal nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. La3+ exerts a dose-dependent positive modulation on alpha1 beta1 gamma8 muscle AChRs, whereas it modulates negatively either alpha2 beta2, alpha2 beta4 or alpha3 beta4 neuronal AChRs. Moreover, La3+ appears to accelerate the desensitization of neuronal receptors. In both muscle and neuronal AChRs, the respective potentiating or inhibiting effects of La3+ on the ACh-currents are voltage-independent, suggesting that La3+ is acting at a site located in the external domain of the receptor.  相似文献   

3.
While the slow onset of desensitization of nicotinic acetylcholine receptors (AChRs), relative to the rate of acetylcholine removal, excludes this kinetic state from shaping synaptic responses in normal neuromuscular transmission, its role in neuromuscular disorders has not been examined. The slow-channel congenital myasthenic syndrome (SCCMS) is a disorder caused by point mutations in the AChR subunit-encoding genes leading to kinetically abnormal (slow) channels, reduced miniature endplate current amplitudes (MEPCs), and degeneration of the postsynaptic membrane. Because of this complicated picture of kinetic and structural change in the neuromuscular junction, it is difficult to assess the importance of the multiple factors that may be responsible for the reduced endplate current amplitudes, and ultimately the clinical syndrome. In order to address this we have used a transgenic mouse model for the SCCMS that has slow AChR ion channels and reduced endplate responsiveness in the absence of any of the degenerative changes. We found that the reduction in MEPC amplitudes in these mice could not be explained by either reduced AChR number or by reduced AChR channel conductance. Rather, we found that the mutant AChRs in situ manifested an activity-dependent reduction in sensitivity that caused diminished MEPC and endplate current amplitude with nerve stimulation. This observation demonstrates that the basis for the reduction in MEPC amplitudes in the SCCMS may be multifactorial. Moreover, these findings demonstrate that, under conditions that alter their rate of desensitization, the kinetic properties of nicotinic AChRs can control the strength of synaptic responses.  相似文献   

4.
Functional effects of human alpha 5 nicotinic ACh receptor (AChR) subunits coassembled with alpha 3 and beta 2 or with alpha 3 and beta 4 subunits, were investigated in Xenopus oocytes. The presence of alpha 5 subunits altered some properties of both alpha 3 AChRs and differentially altered other properties of alpha 3 beta 2 AChRs vs. alpha 3 beta 4 AChRs. alpha 5 subunits increased desensitization and Ca++ permeability of all alpha 3 AChRs. The Ca++ permeabilities of both alpha 3 beta 2 alpha 5 and alpha 3 beta 4 alpha 5 AChRs were comparable to that of alpha 7 AChRs. As we have shown previously, alpha 5 subunits increased the ACh sensitivity of alpha 3 beta 2 AChRs 50-fold but had little effect on alpha 3 beta 4 AChRs. alpha 5 caused only subtle changes in the activation potencies of alpha 3 AChRs for nicotine, cytisine and 1,1-dimethyl-4-plenylpiperazinium (DMPP). However, alpha 5 increased the efficacies of nicotine and DMPP on alpha 3 beta 2 AChRs but decreased them on alpha 3 beta 4 AChRs. Immunoisolation of cloned human AChRs expressed in oocytes showed that alpha 5 efficiently coassembled with alpha 3 plus beta 2 and/or beta 4 subunits. As expected, human AChRs immunoisolated from SH-SY5Y neuroblastoma cells showed that AChRs containing alpha 3 and probably alpha 5 subunits were present, but alpha 4 AChRs were not. In brain, by contrast, alpha 4 beta 2 AChRs were shown to predominate over alpha 3 AChRs. Some of the brain alpha 4 beta 2 AChRs were found to contain alpha 5 subunits.  相似文献   

5.
kappa-Flavotoxin (kappa-FTX), a snake neurotoxin that is a selective antagonist of certain neuronal nicotinic acetylcholine receptors (AChRs), has recently been isolated and characterized [Grant, G. A., Frazier, M. W., & Chiappinelli, V. A. (1988) Biochemistry 27, 1532-1537]. Like the related snake toxin kappa-bungarotoxin (kappa-BTX), kappa-FTX binds with high affinity to alpha 3 subtypes of neuronal AChRs, even though there are distinct sequence differences between the two toxins. To further characterize the sequence regions of the neuronal AChR alpha 3 subunit involved in formation of the binding site for this family of kappa-neurotoxins, we investigated kappa-FTX binding to overlapping synthetic peptides screening the alpha 3 subunit sequence. A sequence region forming a "prototope" for kappa-FTX was identified within residues alpha 3 (51-70), confirming the suggestions of previous studies on the binding of kappa-BTX to the alpha 3 subunit [McLane, K. E., Tang, F., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 1537-1544] and alpha-bungarotoxin to the Torpedo AChR alpha subunit [Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230] that this sequence region is involved in formation of a cholinergic site. Single residue substituted analogues, where each residue of the sequence alpha 3 (51-70) was sequentially replaced by a glycine, were used to identify the amino acid side chains involved in the interaction of this prototope with kappa-FTX.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Through a study of cloned nicotinic receptors expressed in Xenopus oocytes, we provide evidence that alpha-conotoxin ImI, a peptide marine snail toxin that induces seizures in rodents, selectively blocks subtypes of nicotinic acetylcholine receptors. alpha-Conotoxin ImI blocks homomeric alpha 7 nicotinic receptors with the highest apparent affinity and homomeric alpha 9 receptors with 8-fold lower affinity. This toxin has no effect on receptors composed of alpha 2 beta 2, alpha 3 beta 2, alpha 4 beta 2, alpha 2 beta 4, alpha 3 beta 4, or alpha 4 beta 4 subunit combinations. In contrast to alpha-bungarotoxin, which has high affinity for alpha 7, alpha 9, and alpha 1 beta 1 gamma delta receptors, alpha-conotoxin ImI has low affinity for the muscle nAChR. Related Conus peptides, alpha-conotoxins MI and GI, exhibit a distinct specificity, strictly targeting the muscle subtype receptor but not alpha 7 or alpha 9 receptors. alpha-Conotoxins thus represent selective tools for the study of neuronal nicotinic acetylcholine receptors.  相似文献   

7.
Substance P is known to noncompetitively inhibit activation of muscle and neuronal nicotinic acetylcholine receptors. Neuronal nicotinic receptors formed from different combinations of alpha and beta subunits exhibited differential sensitivity to substance P, with those containing beta-4 subunits having a 25-fold higher affinity than those having beta-2 subunits. To identify the regions and/or amino acid residues of the beta subunit responsible for this difference, chimeric beta subunits were coexpressed with alpha-3 in Xenopus oocytes and the IC50 values for substance P were determined. Amino acid residues between 105 and 109 (beta4 numbering), in the middle of the N-terminal domain, and between 214 and 301, between the extracellular side of M1 and the intracellular side of M3, were identified as major contributors to the apparent affinity of substance P. The affinity of acetylcholine was only affected by residue changes between 105 and 109. Site-directed mutagenesis revealed two amino acids that are important determinants of the affinity of substance P, beta4(V108)/beta2(F106), which is in the middle of the first extracellular domain, and beta4(F255)/beta2(V253), which is within the putative channel lining transmembrane domain M2. However, other residues within these domains must be making subtle but significant contributions, since simultaneous mutation of both these amino acids did not cause complete interconversion of the beta subunit-dependent differences in the receptor affinity for substance P.  相似文献   

8.
We report that preapplication of ivermectin, in the micromolar range, strongly enhances the subsequent acetylcholine-evoked current of the neuronal chick or human alpha7 nicotinic acetylcholine receptors reconstituted in Xenopus laevis oocytes and K-28 cells. This potentiation does not result from nonspecific Cl- currents. The concomitant increase in apparent affinity and cooperativity of the dose-response curve suggest that ivermectin acts as a positive allosteric effector. This interpretation is supported by the observation of an increase in efficiency of a partial agonist associated with the potentiation and by the differential effect of ivermectin on mutants within the M2 channel domain. Ivermectin effects reveal a novel allosteric site for pharmacological agents on neuronal alpha7 nicotinic acetylcholine receptors.  相似文献   

9.
1. The possible role of intracellular Ca2+ levels ([Ca2+]i) in desensitization of nicotinic acetylcholine receptors (AChRs) was investigated in rat cultured chromaffin cells by use of combined whole-cell patch clamping and confocal laser scanning microscopy with the fluorescent dye fluo-3. 2. On cells held at -70 mV, pressure-application of nicotine elicited inward currents with associated [Ca2+]i rises mainly due to influx through nicotinic AChRs. These responses were blocked by (+)-tubocurarine (10 microM) but were insensitive to alpha-bungarotoxin (1 microM) or Cd2+ (0.1 mM). 3. Pressure applications of 1 mM nicotine for 2 s (conditioning pulse) evoked inward currents which faded biexponentially to a steady state level due to receptor desensitization and were accompanied by a sustained increase in [Ca2+]i. Inward currents evoked by subsequent application of brief test pulses of nicotine were depressed but recovered with a time course reciprocal to the decay of the [Ca2+]i transient induced by the conditioning pulse. 4. Omission of intracellular Ca2+ chelators or use of high extracellular Ca2+ solution (10 mM) lengthened recovery of nicotinic AChRs from desensitization while adding BAPTA or EGTA intracellularly had the opposite effect. When the patch pipette contained fluo-3 or no chelators, after establishing whole cell conditions the rate of recovery became progressively longer presumably due to dialysis of endogenous Ca2+ buffers. None of these manipulations of external or internal Ca2+ had any effect on onset or steady state level of desensitization. 5. High spatial resolution imaging of [Ca2+]i in intact cells (in the presence of 0.1 mM Cd2+) showed that its level in the immediate submembrane area decayed at the same rate as in the rest of the cell, indicating that Ca2+ was in a strategic location to modulate (directly or indirectly) AChR desensitization. 6. The present data suggest that desensitized nicotinic AChRs are stabilized in their conformation by raised [Ca2+]i and that this phenomenon retards their recovery to full activity.  相似文献   

10.
To identify the molecular determinants underlying the pharmacological diversity of neuronal nicotinic acetylcholine receptors, we compared the alpha7 homo-oligomeric and alpha4beta2 hetero-oligomeric receptors. Sets of residues from the regions initially identified within the agonist binding site of the alpha4 subunit were introduced into the alpha7 agonist binding site, carried by the homo-oligomeric alpha7-V201-5HT3 chimera. Introduction of the alpha4 residues 183-191 into alpha7 subunit sequence (chimera C2) selectively increased the apparent affinities for equilibrium binding and for ion channel activation by acetylcholine, resulting in a receptor that no longer displays differences in the responses to acetylcholine and nicotine. Introduction of the alpha4 residues 151-155 (chimera B) produced a approximately 100-fold increase in the apparent affinity for both acetylcholine and nicotine in equilibrium binding measurements. In both cases electrophysiological recordings revealed a much smaller increase (three- to sevenfold) in the apparent affinity for activation, but the concentrations required to desensitize the mutant chimeras parallel the shifts in apparent binding affinity. The data were fitted by a two-state concerted model, and an alteration of the conformational isomerization constant leading to the desensitized state accounts for the chimera B phenotype, whereas alteration of the ligand binding site accounts for the chimera C2 phenotype. Point mutation analysis revealed that several residues in both fragments contribute to the phenotypes, with a critical effect of the G152K and T183N mutations. Transfer of alpha4 amino acids 151-155 and 183-191 into the alpha7-V201-5HT3 chimera thus confers physiological and pharmacological properties typical of the alpha4beta2 receptor.  相似文献   

11.
12.
Although the expression patterns of the neuronal nicotinic acetylcholine receptor (nAChR) subunits thus far described are known, the subunit composition of functional receptors in different brain areas is an ongoing question. Mice lacking the beta2 subunit of the nAChR were used for receptor autoradiography studies and patch-clamp recording in thin brain slices. Four distinct types of nAChRs were identified, expanding on an existing classification [Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455-1473.], and tentatively identifying the subunit composition of nAChRs in different brain regions. Type 1 nAChRs bind alpha-bungarotoxin, are not altered in beta2 -/- mice, and contain the alpha7 subunit. Type 2 nAChRs contain the beta2 subunit because they are absent in beta2 -/- mice, bind all nicotinic agonists used with high affinity (excluding alpha-bungarotoxin), have an order of potency for nicotine > cytisine in electrophysiological experiments, and are likely to be composed of alpha4 beta2 in most brain regions, with other alpha subunits contributing in specific areas. Type 3 nAChRs bind epibatidine with high affinity in equilibrium binding experiments and show that cytisine is as effective as nicotine in electrophysiological experiments; their distribution and persistence in beta2 -/- mice strongly suggest a subunit composition of alpha3 beta4. Type 4 nAChRs bind cytisine and epibatidine with high affinity in equilibrium binding experiments and persist in beta2 -/- mice; cytisine = nicotine in electrophysiological experiments. Type 4 nAChRs also exhibit faster desensitization than type 3 nAChRs at high doses of nicotine. Knock-out animals lacking individual alpha subunits should allow a further dissection of nAChR subclasses.  相似文献   

13.
1. Site-directed mutagenesis was used to create an altered form of the chicken alpha7 nicotinic acetylcholine (ACh) receptor subunit (alpha7x61) in which a leucine residue was inserted between residues Leu9' and Ser10' in transmembrane domain 2. The properties of alpha7x61 receptors are distinct from those of the wild-type receptor. 2. Oocytes expressing wild-type alpha7 receptors responded to 10 microM nicotine with rapid inward currents that desensitized with a time-constant of 710+/-409 ms (mean+/-s.e.mean, n=5). However in alpha7x61 receptors 10 microM nicotine resulted in slower onset inward currents that desensitized with a time-constant of 5684+/-3403 ms (mean+/-s.e.mean, n = 4). No significant difference in the apparent affinity of nicotine or acetylcholine between mutant and wild-type receptors was observed. Dihydro-beta-erythroidine (DHbetaE) acted as an antagonist on both receptors. 3. Molecular modelling of the alpha7x61 receptor channel pore formed by a bundle of M2 alpha-helices suggested that three of the channel lining residues would be altered by the leucine insertion i.e.; Ser10 would be replaced by the leucine insertion, Val13' and Phe14' would be replaced, by Thr and Val, respectively. 4 When present in the LEV-1 nicotinic ACh receptor subunit from Caenorhabditis elegans the same alteration conferred resistance to levamisole anthelmintic drug. Levamisole blocked responses to nicotine of wild-type and alpha7x61 receptors. However, block was more dependent on membrane potential for the alpha7x61 receptors. 5. We conclude that the leucine insertion in transmembrane domain 2 has the unusual effect of slowing desensitization without altering apparent agonist affinity.  相似文献   

14.
Atropine, the classic muscarinic receptor antagonist, inhibits ion currents mediated by neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. At the holding potential of -80 mV, 1 microM atropine inhibits 1 mM acetylcholine-induced inward currents mediated by rat alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2, alpha4beta4, and alpha7 nicotinic receptors by 12-56%. Inward currents induced with a low agonist concentration are equally inhibited (alpha3beta2, alpha3beta4), less inhibited (alpha2beta4, alpha7), or potentiated (alpha4beta2, alpha4beta4) by 1 microM atropine. Effects on the more sensitive alpha4beta4 nicotinic receptors were investigated in detail by systematic variation of acetylcholine and atropine concentrations and of membrane potential. At high agonist concentration, atropine inhibits alpha4beta4 nicotinic receptor-mediated ion current in a noncompetitive, voltage-dependent way with IC50 values of 655 nM at -80 mV and of 4.5 microM at -40 mV. At low agonist concentration, 1 microM atropine potentiates alpha4beta4 nicotinic receptor-mediated ion current. This potentiating effect is surmounted by high concentrations of acetylcholine, indicating a competitive interaction of atropine with the nicotinic receptor, and potentiation is also reversed at high atropine concentrations. Steady state effects of acetylcholine and atropine are accounted for by a model for combined receptor occupation and channel block, in which atropine acts on two distinct sites. The first site is associated with noncompetitive ion channel block. The second site is associated with competitive potentiation, which appears to occur when the agonist recognition sites of the receptor are occupied by acetylcholine and atropine. The apparent affinity of atropine for the agonist recognition sites of the alpha4beta4 nicotinic acetylcholine receptor is estimated to be 29.9 microM.  相似文献   

15.
The predicted major intracellular domains of the chick and rat neuronal nicotinic acetylcholine receptor alpha 7 subunits were expressed in E. coli as glutathione-S-transferase fusion proteins. These proteins were then purified to near homogeneity by chromatography on immobilized glutathione. The intracellular domains of the alpha 7 subunit from both species were phosphorylated to high stoichiometry by cAMP-dependent protein kinase, but not by protein kinase C, cGMP-dependent protein kinase, or calcium/calmodulin-dependent protein kinase. Phosphorylation occurred on serine residues only within an identical single tryptic peptide for both proteins. This conserved phosphorylation site was identified as Ser 342 utilizing site-directed mutagenesis. These results demonstrate that the intracellular domain of the alpha 7 subunit is a substrate of PKA, and suggest a role for protein phosphorylation in mediating cellular regulation upon neuronal AChRs containing this subunit.  相似文献   

16.
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) alpha subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing alpha N217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for alpha N217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-alpha-bungarotoxin binding, is also enhanced 20-fold by alpha N217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the beta, epsilon, or delta subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.  相似文献   

17.
18.
The properties of nicotinic acetylcholine receptors (AChRs) on cultured rat superior cervical ganglion (SCG) neurons were analysed. AChR agonists [1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), cytisine] were applied to whole cells within 70ms. The desensitization rate of whole-cell currents during constant application of DMPP varied between neurons. The time course of desensitization was fitted by double exponentials with time constants kfast, of between 0.35 and 0.55s, and kslow, of 3-5s. By exchanging intracellular chloride for caesium methanesulphonate, the possibility of interference by a calcium-activated chloride current was excluded. In cells that exhibited a slowly desensitizing current during the application 20 microM DMPP, equimolar cytisine induced a larger peak current compared to the response to DMPP, while in cells with rapidly desensitizing DMPP-induced currents the response to equimolar cytisine was smaller. The differences in desensitization rates and agonist potencies are due to different functional properties of AChR subtypes, as indicated by currents recorded from outside-out patches upon rapid agonist application and removal (2ms each). The results indicate the presence of two distinct AChR subtypes on SCG neurons: one with a fast and one with a slow activation/desensitization rate, but both with similar single-channel conductances. Slow activation/desensitization was found to be associated with a high potency of cytisine/low potency of DMPP. For AChRs with rapid activation/desensitization kinetics the agonist potencies were reversed.  相似文献   

19.
The nicotinic acetylcholine receptors (AChRs) from Torpedo electric organ and mouse muscles when expressed in Xenopus oocytes desensitize with different time courses. Initially, the role of cAMP-dependent phosphorylation on the gamma subunits in the different desensitization rates was investigated by expressing normal and mutant AChRs in the oocytes cultured in the presence of gentamicin. Mutant Torpedo AChRs lacking the potential cAMP-dependent phosphorylation sites in the gamma subunit appear to desensitize like normal Torpedo AChRs. Similarly, mutant mouse extrajunctional AChRs containing a newly created phosphorylation site in the gamma subunit appeared to desensitize like normal mouse AChRs, which lack the potential cAMP-dependent phosphorylation site in the gamma subunit. These results suggest that different rates of desensitization between the Torpedo and muscle extrajunctional AChRs are not attributable to differential cAMP-dependent phosphorylation of these AChRs. Subsequently, to determine whether gentamicin used in culturing oocytes differentially interacts with muscle junctional and extrajunctional AChRs, we analyzed rates of current decay following different gentamicin treatments. Both chronic and acute treatment with gentamicin profoundly accelerated the decay of whole-cell currents mediated by both types of AChR. The effect of prolonged gentamicin treatment on junctional AChRs was long lasting when compared to treatment on extrajunctional AChRs. Although the two types of AChR still desensitize differently in the absence of gentamicin, these results suggest that the characteristic desensitization of junctional and extrajunctional AChRs observed previously is largely due to differential interactions of gentamicin with the two types of AChR.  相似文献   

20.
The effects of the nicotinic agonist (+)-anatoxin-a have been examined in four different preparations, representing at least two classes of neuronal nicotinic receptors. (+)-Anatoxin-a was most potent (EC50 = 48 nM) in stimulating 86Rb+ influx into M10 cells, which express the nicotinic receptor subtype comprising alpha 4 and beta 2 subunits. A presynaptic nicotinic receptor mediating acetylcholine release from hippocampal synaptosomes was similarly sensitive to (+)-anatoxin-a (EC50 = 140 nM). alpha-Bungarotoxin-sensitive neuronal nicotinic receptors, studied using patch-clamp recording techniques, required slightly higher concentrations of this alkaloid for activation: Nicotinic currents in hippocampal neurons were activated by (+)-anatoxin-a with an EC50 of 3.9 microM, whereas alpha 7 homooligomers reconstituted in Xenopus oocytes yielded an EC50 value of 0.58 microM for (+)-anatoxin-a. In these diverse preparations, (+)-anatoxin-a was between three and 50 times more potent than (-)-nicotine and approximately 20 times more potent than acetylcholine, making it the most efficacious nicotinic agonist thus far described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号