首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
门秀萍 《电源技术》2012,36(5):684-685,689
介绍了一种以DSP为主控芯片的太阳电池MPPT的控制方法,它能稳定快速跟踪太阳电池组件的最大输出功率点,实现太阳电池组件和负载优化匹配。实验结果表明:该控制方法能够稳定快速地跟踪太阳电池最大功率点,提高了太阳电池组件的效率。  相似文献   

2.
曾翔  李咏红  师彦荣 《电源技术》2011,35(9):1102-1103,1150
提出了一种太阳电池充电器的设计方案,为用户提供锂电池和镍电池两种充电选择。太阳电池板的输出通过降压开关稳压器LT1777转化成稳定电压为充电模块MAX1501供电。系统整体的控制功能由微处理器PIC16F877A完成。本设计成本低、效率高,有良好的应用前景。  相似文献   

3.
适用于太阳能飞行器的单晶硅太阳电池   总被引:1,自引:0,他引:1  
潘振  呼文韬  王寅  郭林  付增英 《电源技术》2016,(8):1722-1725
综述了适用于太阳能飞行器的单晶硅太阳电池的国内外研究进展,主要介绍包括IBC、HIT、HBC、PERC等高效太阳电池的器件结构、研制工艺、性能特点以及在太阳能飞行器能源领域的应用。结合可能存在的临近空间环境特点,从转换效率、环境适应性和可靠性等方面对这几种太阳电池进行了比较分析。  相似文献   

4.
5.
杜雄  周雒维  时颖 《电源学报》2007,5(4):309-315
用于风力发电的AC-DC整流器接口电路,需要对感应发电机或永磁同步发电机提供无功功率。本文采用空间矢量分析方法,对一种传统的用于单位功率因数校正的串联双Boost型三相PWM整流器进行了研究,并对该电路的有功和无功处理能力进行了分析,表明该电路可以在超前或滞后30°功率因数角的范围内工作,适用于风力发电系统中的三相PWM整流器接口电路。同时该电路的共模电压幅值比常规的六开关PWM整流器减少33%,且仅用两个高频开关,因而具有很大的工程实用价值。  相似文献   

6.
谢子青  叶建美 《电源技术》2011,35(6):691-692
太阳电池的输出特性随负载及外界环境的变化而变化,太阳电池阵列保持工作在最大功率点附近,能极大地提高光伏电池的转换效率。根据最大功率点跟踪的基本原理,提出了基于模糊控制,具有在线参数调整的自寻优方法占空比扰动法。当外界环境变化时,仿真结果显示系统能迅速做出反应,使系统始终工作在最大功率点附近,具有很好的稳定性。  相似文献   

7.
太阳能无人机的能源系统由太阳电池阵、储能电池组、控制器以及配电器组成,由于安装太阳电池的飞机机翼外形为多曲面形状,安装于其上的太阳电池在同一时刻所受光照强度不同,这就造成不同子阵之间的电流不同,按照传统的方法直接互连达到指定电压,则太阳电池各个子阵之间必然发生工作点相互钳位问题造成系统发电能力降低,在太阳高度角较低的早晚时刻甚至造成能源系统失效。提出了一种升降压型MPPT控制器,该控制器由H桥式DC-DC电路组成,在输入端控制器实时追踪太阳电池的最大工作点,在输出端控制器根据外部电路情况通过升降压变换,使多模块之间实现工作点匹配,从而实现太阳电池阵功率的最大程度输出,提升能源系统发电效率,给出了控制器的追踪算法,控制逻辑,并对可行性进行了分析。  相似文献   

8.
一种太阳能电池MPPT控制器实现及测试方法的研究   总被引:6,自引:0,他引:6  
本文根据太阳能电池的特性,设计了一种基于"电压扰动法"的太阳能电池最大功率点跟踪(MPPT)控制器,并提出了一种简单、实用的模拟太阳能电池对控制器进行测试的方法,理论证明该方法是可行的,并得到实际验证.在此实验方法下,对设计的MPPT控制器进行测试,结果表明它有较好的跟踪性能.  相似文献   

9.
一种适用于电子镇流器的IC芯片——IR2520D   总被引:1,自引:0,他引:1  
本文介绍了IC IR2520D的内部结构、典型应用电路及其功能,最后说明了适应于不同灯管的设计步骤和电路参数的调整方法.  相似文献   

10.
针对光伏电池最大功率点追踪(MPPT)算法中存在的跟踪速度和精度无法兼顾的问题,提出了一种基于Fuzzy-PID控制的新型算法。为验证该算法的动态和稳态性能,设计了4个算例,并在MATLAB/Simulink中将所提出的算法与另外3种MPPT算法进行仿真对比,通过性能指标的比较,验证了所提出的算法具有快速追踪变化和有效降低稳态时功率震荡的优点。  相似文献   

11.
在局部阴影条件下,光伏阵列的输出功率会出现多峰现象,传统MPPT控制方法搜索全局最大功率点会发生寻优失效。提出了一种高效的光伏多峰MPPT控制算法。该算法基于天牛须搜索算法,通过引入随时间变化的自适应步长因子,在算法初期自动的选取较大的搜索步长,使之保持较高的全局搜索能力;中期逐渐增大步长的衰减速度,加快算法收敛;后期逐渐减小步长的衰减速度,以提高收敛精度。Matlab结果表明,该算法可有效地减小搜索时间和搜索震荡,显著提高收敛速度,同时又可大大地提高搜索精度,准确搜索到光伏最大输出功率。  相似文献   

12.
太阳电池串联电阻的一种精确算法   总被引:1,自引:0,他引:1  
晶体硅太阳电池的电阻由基片电阻、扩散区的薄层电阻、接触电阻等组成.通过建立晶体硅太阳电池串联电阻的数学模型,精确地求得串联电阻值,并利用生产线上测得的数据验证了该模型计算结果的准确性.  相似文献   

13.
针对传统最大功率追踪(MPPT)算法存在跟踪速度慢、准确度不高和局部阴影等问题,采用基于改进遗传算法优化的BP神经网络对最大功率点进行追踪.该算法针对传统BP神经网络预测算法的不足,采用梯度下降法与高斯牛顿法相结合的学习算法来提高收敛速度,并采用遗传算法优化的BP神经网络避免陷入局部最小值.在总结现有研究成果的基础上,...  相似文献   

14.
子模块电容电压的稳定对MMC稳定运行至关重要。随着MMC电压等级提高,子模块数量逐步增大,传统排序均压算法难以满足控制要求。针对这种情况,提出一种适用于高电压等级的子模块电容电压分组的均压控制算法,所耗资源和时间大大减少,并且能够达到与排序均压相同的均压效果,减轻了阀控系统的设计难度,提高系统可靠性。  相似文献   

15.
光伏MPPT系统电压控制器的优化设计   总被引:2,自引:0,他引:2       下载免费PDF全文
分析了光伏MPPT系统构成及工作原理。使用基于变步长电压扰动法作为功率/电压寻优控制器。为实现快速稳定的光伏MPPT响应,重点对光伏输出电压控制器的电压环进行优化设计。设计了一种光伏MPPT电压复合控制器,采用电压顺馈+PI调节器的方法实现。通过对光伏输出电压控制器进行数学建模得到电压闭环传递函数。确定了最佳PI调节器参数以得到快速稳定的MPPT控制。仿真分析结果以及试验结果表明,此电压复合控制器能够快速、稳定地实现光伏MPPT响应。  相似文献   

16.
一种适用于高频Buck变换器的新型电流源驱动   总被引:1,自引:1,他引:0  
针对同步整流Buck变换器,提出一种新型MOSFET电流源驱动电路(current source driver,CSD).该CSD能够用不同驱动电流驱动Buck变换器中两只MOSFET,从而实现最优化设计.对于控制管,最优化设计为开关损耗和驱动电路损耗之间的平衡;对于同步整流管,最优化设计为驱动损耗与体二极管损耗之间的平衡.还提出基于磁集成技术的改进型CSD,以减少磁芯数目和磁芯损耗.详细分析该CSD电路工作原理,讨论最优化设计,并给出实验结果.  相似文献   

17.
新的电网导则要求风力发电系统具有一定的低压度过能力(LVRT),采用一种低成本的电压跌落发生器(VSG)方案,可以方便地模拟电网电压跌落.以单片机作为控制器,以晶闸管作为交流开关,以MOC3062作为晶闸管驱动器,构成变压器形式的单相VSG,省去了同步电路,因而结构和控制简单,可扩展性强,成本低,可靠性高,能够实现大功率等级.仿真和实验结果表明电压衔接良好,波形畸变小,可以满足风电测试的需求.  相似文献   

18.
徐超  张淼 《电源学报》2012,10(4):90-96,106
光伏发电系统的效率很大程度上决定于其最大功率点的跟踪。介绍了光伏电池电路模型,在Matlab/Simulink环境下对光伏电池的电气特性进行了仿真,分析了光伏电池最大功率点跟踪控制原理,利用玻尔兹曼函数自适应算法,设计了一基于三重Boost电路的最大功率点跟踪系统,并进行了仿真和实验研究;仿真和实验结果证明所设计的方法是可行的。  相似文献   

19.
一种适用于IGBT,MOSFET的驱动电路   总被引:2,自引:0,他引:2  
讨论了一种适用于IGBT和MOSFET的新型驱动电路,该电路无需附加单独的浮地电源,工作频率高,延迟时间小,适用于高频软开关变换器场合。  相似文献   

20.
适用于Buck电路的一种改进型软开关实现方法   总被引:1,自引:0,他引:1  
用同步整流加电感电流反向的方法可实现Buck电路开关管的ZVS,但该方法的电感电流纹波比较大.从而会引起较大的输出电压纹波,只适用于对输出电压纹波要求不高的场合。若靠单纯增加输出滤波电容的数量来降低输出电压纹波会大大增加变换器的成本。文中提出了一种改进方案,通过附加一个电感和较小的电容,在实现开关管ZVS的基础上大大减少了输出电压纹波。最后的实验结果验证了该电路的工作原理及有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号