共查询到20条相似文献,搜索用时 0 毫秒
1.
随着深度学习研究与应用的迅速发展,人工智能安全问题日益突出。近年来,深度学习模型的脆弱性和不鲁棒性被不断的揭示,针对深度学习模型的攻击方法层出不穷,而后门攻击就是其中一类新的攻击范式。与对抗样本和数据投毒不同,后门攻击者在模型的训练数据中添加触发器并改变对应的标签为目标类别。深度学习模型在中毒数据集上训练后就被植入了可由触发器激活的后门,使得模型对于正常输入仍可保持高精度的工作,而当输入具有触发器时,模型将按照攻击者所指定的目标类别输出。在这种新的攻击场景和设置下,深度学习模型表现出了极大的脆弱性,这对人工智能领域产生了极大的安全威胁,后门攻击也成为了一个热门研究方向。因此,为了更好的提高深度学习模型对于后门攻击的安全性,本文针对深度学习中的后门攻击方法进行了全面的分析。首先分析了后门攻击和其他攻击范式的区别,定义了基本的攻击方法和流程,然后对后门攻击的敌手模型、评估指标、攻击设置等方面进行了总结。接着,将现有的攻击方法从可见性、触发器类型、标签类型以及攻击场景等多个维度进行分类,包含了计算机视觉和自然语言处理在内的多个领域。此外,还总结了后门攻击研究中常用的任务、数据集与深度学习模型,并介绍了后门攻击在数据隐私、模型保护以及模型水印等方面的有益应用,最后对未来的关键研究方向进行了展望。 相似文献
2.
深度学习在各领域全面应用的同时, 在其训练阶段和推理阶段也面临着诸多安全威胁。神经网络后门攻击是一类典型的面向深度学习的攻击方式, 攻击者通过在训练阶段采用数据投毒、模型编辑或迁移学习等手段, 向深度神经网络模型中植入非法后门, 使得后门触发器在推理阶段出现时, 模型输出会按照攻击者的意图偏斜。这类攻击赋予攻击者在一定条件下操控模型输出的能力, 具有极强的隐蔽性和破坏性。 因此, 有效防御神经网络后门攻击是保证智能化服务安全的重要任务之一, 也是智能化算法对抗研究的重要问题之一。本文从计算机视觉领域出发, 综述了面向深度神经网络后门攻击的防御技术。首先, 对神经网络后门攻击和防御的基础概念进行阐述, 分析了神经网络后门攻击的三种策略以及建立后门防御机制的阶段和位置。然后,根据防御机制建立的不同阶段或位置, 将目前典型的后门防御方法分为数据集级、模型级、输入级和可认证鲁棒性防御四类。每一类方法进行了详细的分析和总结, 分析了各类方法的适用场景、建立阶段和研究现状。同时, 从防御的原理、手段和场景等角度对每一类涉及到的具体防御方法进行了综合比较。最后, 在上述分析的基础上, 从针对新型后门攻击的防御方法、其他领域后门防御方法、更通用的后门防御方法、和防御评价基准等角度对后门防御的未来研究方向进行了展望。 相似文献
3.
神经网络后门攻击旨在将隐藏的后门植入到深度神经网络中,使被攻击的模型在良性测试样本上表现正常,而在带有后门触发器的有毒测试样本上表现异常,如将有毒测试样本的类别预测为攻击者的目标类。对现有攻击和防御方法进行全面的回顾,以攻击对象作为主要分类依据,将攻击方法分为数据中毒攻击、物理世界攻击、中毒模型攻击和其他攻击等类别。从攻防对抗的角度对现有后门攻击和防御的技术进行归纳总结,将防御方法分为识别有毒数据、识别中毒模型、过滤攻击数据等类别。从深度学习几何原理、可视化等角度探讨深度神经网络后门缺陷产生的原因,从软件工程、程序分析等角度探讨深度神经网络后门攻击和防御的困难以及未来发展方向。希望为研究者了解深度神经网络后门攻击与防御的研究进展提供帮助,为设计更健壮的深度神经网络提供更多启发。 相似文献
4.
深度强化学习(Deep Reinforcement Learning, DRL)方法以其在智能体感知和决策方面的优势,在多用户智能动态频谱接入问题上得到广泛关注。然而,深度神经网络的弱可解释性使得DRL模型容易受到后门攻击威胁。针对认知无线网络下基于深度强化学习模型的动态频谱接入(Dynamic Spectrum Access, DSA)场景,提出了一种非侵入、开销低的后门攻击方法。攻击者通过监听信道使用情况来选择非侵入的后门触发器,随后将后门样本添加到次用户的DRL模型训练池,并在训练阶段将后门植入DRL模型中;在推理阶段,攻击者主动发送信号激活模型中的触发器,使次用户做出目标动作,降低次用户的信道接入成功率。仿真结果表明,所提后门攻击方法能够在不同规模的DSA场景下达到90%以上的攻击成功率,相比持续攻击可以减少20%~30%的攻击开销,并适用于3种不同类型的DRL模型。 相似文献
5.
深度学习模型容易受到后门攻击,在处理干净数据时表现正常,但在处理具有触发模式的有毒样本时会表现出恶意行为.然而,目前大多数后门攻击产生的后门图像容易被人眼察觉,导致后门攻击隐蔽性不足.因此提出了一种基于感知相似性的多目标优化隐蔽图像后门攻击方法.首先,使用感知相似性损失函数减少后门图像与原始图像之间的视觉差异.其次,采用多目标优化方法解决中毒模型上任务间冲突的问题,从而确保模型投毒后性能稳定.最后,采取了两阶段训练方法,使触发模式的生成自动化,提高训练效率.最终实验结果表明,在干净准确率不下降的情况下,人眼很难将生成的后门图像与原始图像区分开.同时,在目标分类模型上成功进行了后门攻击,all-to-one攻击策略下所有实验数据集的攻击成功率均达到了100%.相比其他隐蔽图像后门攻击方法,具有更好的隐蔽性. 相似文献
6.
深度神经网络的安全性和鲁棒性是深度学习领域的研究热点.以往工作主要从对抗攻击角度揭示神经网络的脆弱性,即通过构建对抗样本来破坏模型性能并探究如何进行防御.但随着预训练模型的广泛应用,出现了一种针对神经网络尤其是预训练模型的新型攻击方式——后门攻击.后门攻击向神经网络注入隐藏的后门,使其在处理包含触发器(攻击者预先定义的图案或文本等)的带毒样本时会产生攻击者指定的输出.目前文本领域已有大量对抗攻击与防御的研究,但对后门攻击与防御的研究尚不充分,缺乏系统性的综述.全面介绍文本领域后门攻击和防御技术.首先,介绍文本领域后门攻击基本流程,并从不同角度对文本领域后门攻击和防御方法进行分类,介绍代表性工作并分析其优缺点;之后,列举常用数据集以及评价指标,将后门攻击与对抗攻击、数据投毒2种相关安全威胁进行比较;最后,讨论文本领域后门攻击和防御面临的挑战,展望该新兴领域的未来研究方向. 相似文献
7.
针对现有的神经网络后门攻击研究工作,首先介绍了神经网络后门攻击的相关概念;其次,从研究发展历程、典型工作总结、分类情况3个方面对神经网络后门攻击研究现状进行了说明;然后,对典型的后门植入策略进行了详细介绍;最后,对研究现状进行了总结并对未来的研究趋势进行了展望. 相似文献
8.
9.
目的 图像后门攻击是一种经典的对抗性攻击形式,后门攻击使被攻击的深度模型在正常情况下表现良好,而当隐藏的后门被预设的触发器激活时就会出现恶性结果。现有的后门攻击开始转向为有毒样本分配干净标签或在有毒数据中隐蔽触发器以对抗人类检查,但这些方法在视觉监督下很难同时具备这两种安全特性,并且它们的触发器可以很容易地通过统计分析检测出来。因此,提出了一种隐蔽有效的图像后门攻击方法。方法 首先通过信息隐藏技术隐蔽图像后门触发,使标签正确的中毒图像样本(标签不可感知性)和相应的干净图像样本看起来几乎相同(图像不可感知性)。其次,设计了一种全新的后门攻击范式,其中毒的源图像类别同时也是目标类。提出的后门攻击方法不仅视觉上是隐蔽的,同时能抵御经典的后门防御方法(统计不可感知性)。结果 为了验证方法的有效性与隐蔽性,在ImageN et、MNIST、CIFAR-10数据集上与其他3种方法进行了对比实验。实验结果表明,在3个数据集上,原始干净样本分类准确率下降均不到1%,中毒样本分类准确率都超过94%,并具备最好的图像视觉效果。另外,验证了所提出的触发器临时注入的任意图像样本都可以发起有效的后门攻击。结论 ... 相似文献
10.
近年来,图深度学习模型面临的安全威胁日益严重,相关研究表明,推荐系统中恶意用户可以通过诋毁、女巫攻击等攻击手段轻易地对系统进行欺骗。本文对现有基于图深度学习攻击工作进行系统分析和总结,提出了一种分析图深度学习攻击模型的通用框架,旨在帮助研究者快速梳理领域内现有的方法,进而设计新的攻击模型。该框架将攻击的过程分为预备阶段、攻击算法设计以及攻击实施三大阶段,其中预备阶段包含目标模型评估和攻击者自身评估两个步骤;攻击算法设计包含攻击算法特征设计和攻击算法建立两个步骤;攻击实施包含执行攻击和效果评估两个步骤。同时,我们对每个阶段攻击者的知识水平和能力进行详细说明和分析,并对比不同的方法,描述了其在不同场景下的优缺点。基于提出的框架,对现有图深度学习攻击方法从通用指标和特殊指标角度进行了比较,并总结了该领域常用的数据集。最后,论文对图深度学习攻击研究中的挑战进行分析和展望,以期对未来研究和设计更为健壮的图深度学习模型提供有益参考。 相似文献
11.
不同于集中式深度学习模式,分布式深度学习摆脱了模型训练过程中数据必须中心化的限制,实现了数据的本地操作,允许各方参与者在不交换数据的情况下进行协作,显著降低了用户隐私泄露风险,从技术层面可以打破数据孤岛,显著提升深度学习的效果,能够广泛应用于智慧医疗、智慧金融、智慧零售和智慧交通等领域.但生成对抗式网络攻击、成员推理攻击和后门攻击等典型攻击揭露了分布式深度学习依然存在严重隐私漏洞和安全威胁.首先对比分析了联合学习、联邦学习和分割学习3种主流的分布式深度学习模式特征及其存在的核心问题.其次,从隐私攻击角度,全面阐述了分布式深度学习所面临的各类隐私攻击,并归纳和分析了现有隐私攻击防御手段.同时,从安全攻击角度,深入剖析了数据投毒攻击、对抗样本攻击和后门攻击3种安全攻击方法的攻击过程和内在安全威胁,并从敌手能力、防御原理和防御效果等方面对现有安全攻击防御技术进行了度量.最后,从隐私与安全攻击角度,对分布式深度学习未来的研究方向进行了讨论和展望. 相似文献
12.
作为当前人工智能快速发展的代表性技术之一,深度神经网络的应用范围越来越广,由此带来的安全性问题也逐渐受到关注。现有研究主要聚焦于如何高效构造多样化的对抗样本,以实现对深度神经网络模型的欺骗,以及如何检测对抗样本并加固深度神经网络模型。但是,随着深度神经网络模型的开发越来越依赖开源数据集、预训练模型和计算框架等第三方资源,模型被植入后门的风险越来越高。从深度神经网络模型生命周期的各个环节出发,对深度神经网络模型后门植入与检测相关技术进行了归纳总结,对比分析了不同技术的主要特征与适用场景,对相关技术未来的发展方向进行了展望。 相似文献
13.
王秀秀 《电脑编程技巧与维护》2022,(6):120-122
针对深度学习图像隐私泄露等问题,分析了基于深度学习模型的对抗攻击方法。使用对抗攻击生成对抗样本,能够保护隐私。但是针对检索系统目标对抗攻击的方法,会受到目标样本数量与质量的影响,从而导致攻击效果不佳。通过基于深度学习模型的对抗攻击能够使目标检索精准率作为对样本质量衡量的权重,通过目标类中的样本特征实现加权聚合,得到类特征的最终攻击目标。通过实验结果证明,能够提高检索精准度。 相似文献
14.
深度学习作为人工智能技术的重要组成部分,被广泛应用于计算机视觉和自然语言处理等领域.尽管深度学习在图像分类和目标检测等任务中取得了较好性能,但是对抗攻击的存在对深度学习模型的安全应用构成了潜在威胁,进而影响了模型的安全性.在简述对抗样本的概念及其产生原因的基础上,分析对抗攻击的主要攻击方式及目标,研究具有代表性的经典对... 相似文献
15.
深度神经网络在模型训练阶段易受到后门攻击,在训练图文检索模型时,如有攻击者恶意地将带有后门触发器的图文对注入训练数据集,训练后的模型将被嵌入后门。在模型推断阶段,输入良性样本将得到较为准确的检索结果,而输入带触发器的恶意样本会激活模型隐藏后门,将模型推断结果恶意更改为攻击者设定的结果。现有图文检索后门攻击研究都是基于在图像上直接叠加触发器的方法,存在攻击成功率不高和带毒样本图片带有明显的异常特征、视觉隐匿性低的缺点。提出了结合扩散模型的图文检索模型后门攻击方法(Diffusion-MUBA),根据样本图文对中文本关键词与感兴趣区域(ROI)的对应关系,设计触发器文本提示扩散模型,编辑样本图片中的ROI区域,生成视觉隐匿性高且图片平滑自然的带毒训练样本,并通过训练模型微调,在图文检索模型中建立错误的细粒度单词到区域对齐,把隐藏后门嵌入到检索模型中。设计了扩散模型图像编辑的攻击策略,建立了双向图文检索后门攻击模型,在图-文检索和文-图检索的后门攻击实验中均取得很好的效果,相比其他后门攻击方法提高了攻击成功率,而且避免了在带毒样本中引入特定特征的触发器图案、水印、扰动、局部扭曲形变等。在此基... 相似文献
16.
17.
以深度学习为主要代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患.研究针对深度学习模型的攻防分析基础理论与关键技术,对深刻理解模型内在脆弱性、全面保障智能系统安全性、广泛部署人工智能应用具有重要意义.拟从对抗的角度出发,探讨针对深度学习模型的攻击与防御技术进展和未来挑战.首先介绍了深度学习生命周期不同阶段所面临的安全威胁.然后从对抗性攻击生成机理分析、对抗性攻击生成、对抗攻击的防御策略设计、对抗性攻击与防御框架构建4个方面对现有工作进行系统的总结和归纳.还讨论了现有研究的局限性并提出了针对深度学习模型攻防的基本框架.最后讨论了针对深度学习模型的对抗性攻击与防御未来的研究方向和面临的技术挑战. 相似文献
18.
联邦学习使用户在数据不出本地的情形下参与协作式的模型训练,降低了用户数据隐私泄露风险,广泛地应用于智慧金融、智慧医疗等领域.但联邦学习对后门攻击表现出固有的脆弱性,攻击者通过上传模型参数植入后门,一旦全局模型识别带有触发器的输入时,会按照攻击者指定的标签进行误分类.因此针对联邦学习提出了一种新型后门攻击方案Bac_GAN,通过结合生成式对抗网络技术将触发器以水印的形式植入干净样本,降低了触发器特征与干净样本特征之间的差异,提升了触发器的隐蔽性,并通过缩放后门模型,避免了参数聚合过程中后门贡献被抵消的问题,使得后门模型在短时间内达到收敛,从而显著提升了后门攻击成功率.此外,论文对触发器生成、水印系数、缩放系数等后门攻击核心要素进行了实验测试,给出了影响后门攻击性能的最佳参数,并在MNIST,CIFAR-10等数据集上验证了Bac_GAN方案的攻击有效性. 相似文献
19.
联邦学习作为一种能够解决数据孤岛问题、实现数据资源共享的机器学习方法,其特点与工业设备智能化发展的要求相契合。因此,以联邦学习为代表的人工智能技术在工业互联网中的应用越来越广泛。但是,针对联邦学习架构的攻击手段也在不断更新。后门攻击作为攻击手段的代表之一,有着隐蔽性和破坏性强的特点,而传统的防御方案往往无法在联邦学习架构下发挥作用或者对早期攻击防范能力不足。因此,研究适用于联邦学习架构的后门防御方案具有重大意义。文中提出了一种适用于联邦学习架构的后门诊断方案,能够在无数据情况下利用后门模型的形成特点重构后门触发器,实现准确识别并移除后门模型,从而达到全局模型后门防御的目的。此外,还提出了一种新的检测机制实现对早期模型的后门检测,并在此基础上优化了模型判决算法,通过早退联合判决模式实现了准确率与速度的共同提升。 相似文献
20.
高精度联邦学习模型的训练需要消耗大量的用户本地资源, 参与训练的用户能够通过私自出售联合训练的模型获得非法收益. 为实现联邦学习模型的产权保护, 利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征, 构建一种基于模型后门的联邦学习水印(federated learning watermark based on backdoor, FLWB)方案, 能够允许各参与训练的用户在其本地模型中分别嵌入私有水印, 再通过云端的模型聚合操作将私有后门水印映射到全局模型作为联邦学习的全局水印. 之后提出分步训练方法增强各私有后门水印在全局模型的表达效果, 使得FLWB方案能够在不影响全局模型精度的前提下容纳各参与用户的私有水印. 理论分析证明了FLWB方案的安全性, 实验验证分步训练方法能够让全局模型在仅造成1%主任务精度损失的情况下有效容纳参与训练用户的私有水印. 最后, 采用模型压缩攻击和模型微调攻击对FLWB方案进行攻击测试, 其结果表明FLWB方案在模型压缩到30%时仍能保留80%以上的水印, 在4种不同的微调攻击下能保留90%以上的水印, 具有很好的鲁棒性. 相似文献