共查询到20条相似文献,搜索用时 15 毫秒
1.
事件抽取是信息抽取领域的一个研究热点。在新冠肺炎疫情常态化下,利用事件抽取技术可以筛选出有价值的信息。然而事件抽取领域缺乏精标注的新冠新闻训练数据集,且因部分事件的复杂性,论元不只存在于一句话中,需要多个句子才能完整描述一个事件。因此,首先构建新冠肺炎新闻数据集,接着提出一种三阶段的管道方法实现从篇章中抽取新冠肺炎事件。该方法对数据集进行事件类型分类;进行事件句的抽取;实现篇章级论元抽取。实验结果表明提出的方法能够减少事件分类时间,抽取两个事件句的条件下,对数据通报类论元识别效果最好,准确率、召回率和F1值达到75.0%、73.0%,和74.0%,证明方法能有效抽取新冠肺炎相关篇章级事件。 相似文献
2.
事件抽取可以帮助人们从海量的文本中快速、准确地获取感兴趣的事件知识。然而,目前事件抽取的研究主要集中在从单一句子中抽取事件,由于事件构成的复杂性和语言表述的多样性,多数情况下多句才能完整地描述一个事件。因此,从篇章中抽取出完整的结构化事件信息,显得更有价值和意义。该文首先利用基于注意力机制的序列标注模型联合抽取句子级事件的触发词和实体,与独立进行实体抽取和事件识别相比,联合标注的方法在F值上提升了1个百分点。然后利用多层感知机判断实体在事件中扮演的角色。最后,在句子级事件抽取的基础上,利用整数线性规划的方法进行全局推理,融合句子级事件信息,实现篇章级事件抽取,与基线模型相比,这种基于全局推理的篇章级事件抽取在F值上提升了3个百分点。 相似文献
3.
实体解析是数据集成、数据挖掘等技术中不可或缺的步骤,其具体任务是查找引用自同一真实世界的实体的数据记录.现有的方法多数是通过计算实体记录的属性相似度来评估是否为同一实体,由于该方法需要预先对齐记录属性,无法适应属性中token误放的情形,也不能有效利用跨属性中tokens的语义和结构信息,影响实体识别准确性.本文提出了一种采用主题异构图嵌入的token粒度的实体解析方法(THGE-ER).在token、属性和记录基础上,利用LDA模型为实体记录添加一个主题层级,并构建了一个由token、属性、记录和主题4类节点组成的主题异构图;采用区分节点类型的异构图嵌入表示方法,并将节点间的语义和结构信息嵌入到token层级的嵌入向量中;进一步结合多层次注意力机制,完成最终的实体解析决策.经过大量的实验证明,本文提出的方法表现出了良好的性能. 相似文献
4.
5.
实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了一种混合神经网络模型,同时对实体和事件进行抽取,挖掘两者之间的依赖关系。模型采用双向LSTM识别实体,并将在双向LSTM中获得的实体上下文信息进一步传递到结合了自注意力和门控卷积的神经网络来抽取事件。在英文ACE 2005语料库上的实验结果证明了该文方法优于目前最好的基准系统。 相似文献
6.
基于神经网络的触发词抽取模型利用实体信息判别触发词,但大量无关实体会影响触发词抽取效果。提出一种借助局部实体特征的事件触发词抽取方法,该方法先初步过滤无关实体,并将保留实体分为核心与非核心2类分别进行建模。利用卷积神经网络(CNN)抽取局部特征的特性,从众多实体中定位有助于触发词识别的局部重要实体,采用注意力机制提高其权重,同时利用有效非核心实体的语义排除干扰实体,从而借助重要实体的特征信息判别触发词。在特定和通用领域事件语料库上的实验结果均表明,该方法能够减少无关实体对触发词抽取的干扰,其触发词抽取性能的F1值比基准系统最高可提升0.017。 相似文献
7.
信息提取的目的是从自然语言文件中找到具体信息,现有研究在信息抽取的实体关系和事件抽取任务中仅解决事件论元重叠和实体关系重叠的问题,未考虑两个任务共有的角色重叠问题,导致抽取结果准确率降低。提出一个两阶段的通用模型用于完成实体关系抽取和事件抽取子任务。基于预训练语言模型RoBERTa的共享特征表示,分别对实体关系/事件类型和实体关系/事件论元进行预测。将传统抽取触发词任务转化为多标签抽取事件类型任务,利用多尺度神经网络进一步提取文本特征。在此基础上,通过抽取文本相关类型的事件论元,根据论元角色的重要性对损失函数重新加权,解决数据不平衡、实体关系抽取和事件抽取中共同存在论元角色重叠的问题。在千言数据集中事件抽取和关系抽取任务测试集上的实验验证了该模型的有效性,结果表明,该模型的F1值分别为83.1%和75.3%。 相似文献
8.
9.
命名实体识别和关系抽取是自然语言处理领域的两个重要基本问题.联合抽取方法被提出用于解决传统解决管道抽取方法中存在的一些问题.为了充分融合头实体和句子的语义信息,同时解决可能存在的重叠三元组问题,论文提出了一种新的实体关系联合抽取方法,主要通过序列标注的方式抽取实体关系.该方法主要使用条件层归一化(Condi-tional Layer Normalization)进行信息融合.同时,该方法还赋予了待抽取的头实体和尾实体不同的语义编码.实验结果表明,该方法在使用预训练的BERT预处理编码器的情况下,在NYT和WebNLG数据集上有很好的表现. 相似文献
10.
事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory, Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其他事件对信息,从而得到更丰富的事件对时序关系表示用于时序关系分类.通过TB-Dense(timebank dense)和MATRES(multi-axis temporal relations for start-points)数据集的实验表明:此方法能够取得比当前主流的句子级方法更佳的抽取效果. 相似文献
11.
抽取的目标是在多个文档中提取共有关键信息,其对简洁性的要求高于单文档摘要抽取。现有的多文档摘要抽取方法通常在句子级别进行建模,容易引入较多的冗余信息。为了解决上述问题,提出一种基于异构图分层学习的多文档摘要抽取框架,通过层次化构建单词层级图和子句层级图来有效建模语义关系和结构关系。针对单词层级图和子句层级图这2个异构图的学习问题,设计具有不同层次更新机制的两层学习层来降低学习多种结构关系的难度。在单词层级图学习层,提出交替更新机制更新不同的粒度节点,以单词节点为载体通过图注意网络进行语义信息传递;在子句层级图学习层,提出两阶段分步学习更新机制聚合多种结构关系,第一阶段聚合同构关系,第二阶段基于注意力聚合异构关系。实验结果表明,与抽取式基准模型相比,该框架在Multinews数据集上取得了显著的性能提升,ROUGE-1、ROUGE-2和ROUGE-L分别提高0.88、0.23和2.27,消融实验结果也验证了两层学习层及其层次更新机制的有效性。 相似文献
12.
实体关系抽取是构建大规模知识图谱及各种信息抽取任务的关键步骤.基于预训练语言模型,提出基于头实体注意力的实体关系联合抽取方法.该方法采用卷积神经网络(CNN)提取头实体关键信息,并采用注意力机制捕获头实体与尾实体之间的依赖关系,构建了基于头实体注意力的联合抽取模型(JSA).在公共数据集纽约时报语料库(NYT)和采用远... 相似文献
13.
为研究包含多个实体的关系抽取,提出聚合实体间不同长度路径的方案。考虑不同实体之间的相互关联,将整个句子表示为一个有向图,图中的节点为句子中的实体,边通过实体对和实体对的上下文来表示;将实体对间相同长度的路径通过注意力机制聚合成单一向量表示,不同长度路径对应的单一向量拼接,作为softmax分类器的输入。实验结果表明,在ACE 2005英文数据集上基于注意力机制的实体图路径聚合方案能显著提高多实体关系抽取的F1值。 相似文献
14.
基于多分类SVM-KNN的实体关系抽取方法 总被引:1,自引:0,他引:1
实体关系抽取是信息抽取领域的重要研究课题之一。传统的实体关系抽取研究注重于从实体对出现的上下文中提取词法和语义等特征,然后利用分类器(如SVM)进行实体关系抽取,但该类方法忽略了分类器对实体抽取性能的影响。针对SVM分类器对超平面附近样本分类正确率低的问题,本文设计了一种基于双投票机制的SVM模糊样本选择方法。在此基础上,对确定区域样本直接使用SVM分类器进行分类,并利用KNN算法对模糊区域样本进行二次分类。在SemEval-2010评测任务提供的实体关系抽取数据上进行实验,实验结果表明该方法能较大提高实体关系抽取的性能。 相似文献
15.
中医领域知识主要是以文本的形式存在,具有无规律的语言特性,中医知识的有效挖掘对充分利用文本中蕴藏的经验知识具有重要作用,信息抽取任务是中医知识管理的重要子任务,而关系抽取又是信息抽取任务中的重要环节.针对单粒度信息关系抽取方法中存在的句意传递错误和文本语义丢失的问题,提出将句子中的多粒度信息应用于中医文本关系抽取任务,... 相似文献
16.
事件抽取(event extraction)是自然语言处理(natural language processing,NLP)中的一个重要且有挑战性的任务,以完成从文本中识别出事件触发词(trigger)以及触发词对应的要素(argument)。对于一个句子中有多个事件的多事件抽取任务,提出了一种注意力机制的变种——动态掩蔽注意力机制(dynamic masked attention network,Dy MAN),与常规注意力机制相比,动态掩蔽注意力机制能够捕捉更丰富的上下文表示并保留更有价值的信息。在ACE 2005数据集上进行的实验中,对于多事件抽取任务,与之前最好的模型JRNN相比,Dy MAN模型在触发词分类任务上取得了9. 8%的提升,在要素分类任务上取得了4. 5%的提升,表明基于Dy MAN的事件抽取模型在多事件抽取上能够实现领先的效果。 相似文献
17.
从非结构化文本中联合提取实体和关系是信息抽取中的一项重要任务。现有方法取得了可观的性能,但仍受到一些固有的限制,如错误传播、预测存在冗余性、无法解决关系重叠问题等。为此,提出一种基于图神经网络的联合实体关系抽取模型BSGB(BiLSTM+SDA-GAT+BiGCN)。BSGB分为两个阶段:第一阶段将语义依存分析扩展到语义依存图,提出融合语义依存图的图注意力网络(SDA-GAT),通过堆叠BiLSTM和SDA-GAT提取句子序列和局部依赖特征,并进行实体跨度检测和初步的关系预测;第二阶段构建关系加权GCN,进一步建模实体和关系的交互,完成最终的实体关系三元组抽取。在NYT数据集上的实验结果表明,该模型F1值达到了67.1%,对比在该数据集的基线模型提高了5.2%,对重叠关系的预测也有大幅改善。 相似文献
18.
领域知识图谱在各行各业中都发挥着重要作用,领域实体的获取则是构建领域知识图谱的重要基础。数据标注、编写抽取规则等现有的实体抽取方法往往需要较多的人工参与工作。提出一种基于图排序的实体抽取方法和基于最大信息增益的实体扩展方法来构建领域实体集,通过实体识别获得候选实体,基于维基百科的背景信息计算候选实体间的相关度构建实体图,并利用基于置信度传播的图排序算法筛选领域核心实体。在DBpedia中根据最大信息增益来平衡类与领域核心实体相关性及类的抽象程度两个因素以生成实体扩展的共性类。在此基础上,通过SKOS体系中的“Is subject of”关系获得共性类的实例实体,并根据基于字符串相似和结构相关度的方法对扩展实例实体进一步筛选,最终获得全面、准确的领域实体集。以数据结构课程为例构建该课程领域实体集,得到1 115个实体。实验结果表明,在领域数据集上,领域实体抽取F1值达到0.67,能够在较少人工参与的条件下有效获得领域实体,有助于领域知识图谱的构建。 相似文献
19.
研究发现对大规模的数据进行预训练可以更好地从自然语言文本中捕捉更丰富的语义信息,目前很多的多文档摘要的工作也应用了预训练模型并取得了一定的效果。但是这些预训练模型没有考虑到结构化的实体-关系信息。不能更好地从文本中捕获事实性知识。该文提出了基于实体信息增强和多粒度融合的多文档摘要模型MGNIE,该方法将实体关系信息融入预训练模型ERNIE中,增强知识事实以获得多层语义信息,解决摘要生成的事实一致性问题,进而从多种粒度进行多文档层次结构的融合建模,以词信息、实体信息以及句子信息捕捉长文本信息摘要生成所需的关键信息点。该文设计的模型在国际标准评测数据集MultiNews上的实验证明,所提模型对比强基线模型效果和竞争力获得较大提升。 相似文献
20.
关系抽取旨在从文本中抽取实体与实体之间的语义关系。作为关系抽取的上层任务,实体识别所产生的错误将扩散至关系抽取,从而导致级联错误。与实体相比,实体边界粒度小且具有二义性,更易识别。因此,提出一种基于实体边界组合的关系抽取方法,通过跳过实体,对实体边界两两组合来进行关系抽取。由于边界性能高于实体性能,所以错误扩散的问题得到了缓解;并且通过特征组合的方法将实体类型特征和位置特征加入模型中,性能得到了进一步提高,再次减轻了错误扩散带来的影响。实验结果表明,所提方法在ACE 2005英文数据集的宏平均F1值优于表格-序列编码器方法8.61个百分点。 相似文献