首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文档级事件抽取面临论元分散和多事件两大挑战,已有工作大多采用逐句抽取候选论元的方式,难以建模跨句的上下文信息。为此,提出了一种基于多粒度阅读器和图注意网络的文档级事件抽取模型,采用多粒度阅读器实现多层次语义编码,通过图注意力网络捕获实体对之间的局部和全局关系,构建基于实体对相似度的剪枝完全图作为伪触发器,全面捕捉文档中的事件和论元。在公共数据集ChFinAnn和DuEE-Fin上进行了实验,结果表明提出的方法改善了论元分散问题,提升了模型事件抽取性能。  相似文献   

2.
事件抽取是信息抽取领域的一个研究热点。在新冠肺炎疫情常态化下,利用事件抽取技术可以筛选出有价值的信息。然而事件抽取领域缺乏精标注的新冠新闻训练数据集,且因部分事件的复杂性,论元不只存在于一句话中,需要多个句子才能完整描述一个事件。因此,首先构建新冠肺炎新闻数据集,接着提出一种三阶段的管道方法实现从篇章中抽取新冠肺炎事件。该方法对数据集进行事件类型分类;进行事件句的抽取;实现篇章级论元抽取。实验结果表明提出的方法能够减少事件分类时间,抽取两个事件句的条件下,对数据通报类论元识别效果最好,准确率、召回率和F1值达到75.0%、73.0%,和74.0%,证明方法能有效抽取新冠肺炎相关篇章级事件。  相似文献   

3.
事件抽取可以帮助人们从海量的文本中快速、准确地获取感兴趣的事件知识。然而,目前事件抽取的研究主要集中在从单一句子中抽取事件,由于事件构成的复杂性和语言表述的多样性,多数情况下多句才能完整地描述一个事件。因此,从篇章中抽取出完整的结构化事件信息,显得更有价值和意义。该文首先利用基于注意力机制的序列标注模型联合抽取句子级事件的触发词和实体,与独立进行实体抽取和事件识别相比,联合标注的方法在F值上提升了1个百分点。然后利用多层感知机判断实体在事件中扮演的角色。最后,在句子级事件抽取的基础上,利用整数线性规划的方法进行全局推理,融合句子级事件信息,实现篇章级事件抽取,与基线模型相比,这种基于全局推理的篇章级事件抽取在F值上提升了3个百分点。  相似文献   

4.
篇章级事件抽取研究从整篇文档中检测事件,识别出事件包含的元素并赋予每个元素特定的角色。该文针对限定领域的中文文档提出了基于BERT的端到端模型,在模型的元素和角色识别中依次引入前序层输出的事件类型以及实体嵌入表示,增强文本的事件、元素和角色关联表示,提高篇章中各事件所属元素的识别精度。在此基础上利用标题信息和事件五元组的嵌入式表示,实现主从事件的划分及元素融合。实验证明,该文提出的方法与现有工作相比具有明显的性能提升。  相似文献   

5.
实体解析是数据集成、数据挖掘等技术中不可或缺的步骤,其具体任务是查找引用自同一真实世界的实体的数据记录.现有的方法多数是通过计算实体记录的属性相似度来评估是否为同一实体,由于该方法需要预先对齐记录属性,无法适应属性中token误放的情形,也不能有效利用跨属性中tokens的语义和结构信息,影响实体识别准确性.本文提出了一种采用主题异构图嵌入的token粒度的实体解析方法(THGE-ER).在token、属性和记录基础上,利用LDA模型为实体记录添加一个主题层级,并构建了一个由token、属性、记录和主题4类节点组成的主题异构图;采用区分节点类型的异构图嵌入表示方法,并将节点间的语义和结构信息嵌入到token层级的嵌入向量中;进一步结合多层次注意力机制,完成最终的实体解析决策.经过大量的实验证明,本文提出的方法表现出了良好的性能.  相似文献   

6.
篇章级事件抽取一般将事件抽取任务分为候选实体识别、事件检测和论元识别3个子任务,然后采用级联的方式依次进行,这样的方式会造成误差传递;另外,现有的大多数模型在解码事件时,对事件数量的预测隐含在解码过程中,且只能按照预定义的事件顺序及预定义的角色顺序预测事件论元,使得先抽取的事件并没有考虑到后面抽取的事件。针对以上问题提出一种多任务联合的并行预测事件抽取框架。首先,使用预训练语言模型作为文档句子的编码器,检测文档中存在的事件类型,并使用结构化自注意力机制获取伪触发词特征,预测每种事件类型的事件数量;然后将伪触发词特征与候选论元特征进行交互,并行预测每个事件对应的事件论元,在大幅缩减模型训练时间的同时获得与基线模型相比更好的性能。最终事件抽取结果 F1值为78%,事件类型检测子任务F1值为98.7%,事件数量预测子任务F1值为90.1%,实体识别子任务F1值为90.3%。  相似文献   

7.
实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了一种混合神经网络模型,同时对实体和事件进行抽取,挖掘两者之间的依赖关系。模型采用双向LSTM识别实体,并将在双向LSTM中获得的实体上下文信息进一步传递到结合了自注意力和门控卷积的神经网络来抽取事件。在英文ACE 2005语料库上的实验结果证明了该文方法优于目前最好的基准系统。  相似文献   

8.
基于神经网络的触发词抽取模型利用实体信息判别触发词,但大量无关实体会影响触发词抽取效果。提出一种借助局部实体特征的事件触发词抽取方法,该方法先初步过滤无关实体,并将保留实体分为核心与非核心2类分别进行建模。利用卷积神经网络(CNN)抽取局部特征的特性,从众多实体中定位有助于触发词识别的局部重要实体,采用注意力机制提高其权重,同时利用有效非核心实体的语义排除干扰实体,从而借助重要实体的特征信息判别触发词。在特定和通用领域事件语料库上的实验结果均表明,该方法能够减少无关实体对触发词抽取的干扰,其触发词抽取性能的F1值比基准系统最高可提升0.017。  相似文献   

9.
随着网络信息的剧增,信息流服务备受用户关注.在信息流服务中,如何衡量文本之间的相关度进而从多来源的信息渠道中过滤掉冗余信息提升推荐满意度成为至关重要的环节.当前主流的文本相关度计算方法均是将文本表示为向量,进而通过衡量向量之间的相似度来度量文本间的相关度.然而,信息流中的文本多为新闻文本,这些文本的核心是其描述的事件,...  相似文献   

10.
信息提取的目的是从自然语言文件中找到具体信息,现有研究在信息抽取的实体关系和事件抽取任务中仅解决事件论元重叠和实体关系重叠的问题,未考虑两个任务共有的角色重叠问题,导致抽取结果准确率降低。提出一个两阶段的通用模型用于完成实体关系抽取和事件抽取子任务。基于预训练语言模型RoBERTa的共享特征表示,分别对实体关系/事件类型和实体关系/事件论元进行预测。将传统抽取触发词任务转化为多标签抽取事件类型任务,利用多尺度神经网络进一步提取文本特征。在此基础上,通过抽取文本相关类型的事件论元,根据论元角色的重要性对损失函数重新加权,解决数据不平衡、实体关系抽取和事件抽取中共同存在论元角色重叠的问题。在千言数据集中事件抽取和关系抽取任务测试集上的实验验证了该模型的有效性,结果表明,该模型的F1值分别为83.1%和75.3%。  相似文献   

11.
12.
命名实体识别和关系抽取是自然语言处理领域的两个重要基本问题.联合抽取方法被提出用于解决传统解决管道抽取方法中存在的一些问题.为了充分融合头实体和句子的语义信息,同时解决可能存在的重叠三元组问题,论文提出了一种新的实体关系联合抽取方法,主要通过序列标注的方式抽取实体关系.该方法主要使用条件层归一化(Condi-tional Layer Normalization)进行信息融合.同时,该方法还赋予了待抽取的头实体和尾实体不同的语义编码.实验结果表明,该方法在使用预训练的BERT预处理编码器的情况下,在NYT和WebNLG数据集上有很好的表现.  相似文献   

13.
黄河燕  袁长森  冯冲 《自动化学报》2024,50(10):1953-1962
篇章关系抽取旨在识别篇章中实体对之间的关系. 相较于传统的句子级别关系抽取, 篇章级别关系抽取任务更加贴近实际应用, 但是它对实体对的跨句子推理和上下文信息感知等问题提出了新的挑战. 本文提出融合实体和上下文信息(Fuse entity and context information, FECI)的篇章关系抽取方法, 它包含两个模块, 分别是实体信息抽取模块和上下文信息抽取模块. 实体信息抽取模块从两个实体中自动地抽取出能够表示实体对关系的特征. 上下文信息抽取模块根据实体对的提及位置信息, 从篇章中抽取不同的上下文关系特征. 本文在三个篇章级别的关系抽取数据集上进行实验, 效果得到显著提升.  相似文献   

14.
事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory, Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其他事件对信息,从而得到更丰富的事件对时序关系表示用于时序关系分类.通过TB-Dense(timebank dense)和MATRES(multi-axis temporal relations for start-points)数据集的实验表明:此方法能够取得比当前主流的句子级方法更佳的抽取效果.  相似文献   

15.
多文档摘要抽取的目标是在多个文档中提取共有关键信息,其对简洁性的要求高于单文档摘要抽取.现有的多文档摘要抽取方法通常在句子级别进行建模,容易引入较多的冗余信息.为了解决上述问题,提出一种基于异构图分层学习的多文档摘要抽取框架,通过层次化构建单词层级图和子句层级图来有效建模语义关系和结构关系.针对单词层级图和子句层级图这2个异构图的学习问题,设计具有不同层次更新机制的两层学习层来降低学习多种结构关系的难度.在单词层级图学习层,提出交替更新机制更新不同的粒度节点,以单词节点为载体通过图注意网络进行语义信息传递;在子句层级图学习层,提出两阶段分步学习更新机制聚合多种结构关系,第一阶段聚合同构关系,第二阶段基于注意力聚合异构关系.实验结果表明,与抽取式基准模型相比,该框架在Multi-news数据集上取得了显著的性能提升,ROUGE-1、ROUGE-2和ROUGE-L分别提高0.88、0.23和2.27,消融实验结果也验证了两层学习层及其层次更新机制的有效性.  相似文献   

16.
刘雅璇  钟勇 《计算机应用》2021,41(9):2517-2522
实体关系抽取是构建大规模知识图谱及各种信息抽取任务的关键步骤.基于预训练语言模型,提出基于头实体注意力的实体关系联合抽取方法.该方法采用卷积神经网络(CNN)提取头实体关键信息,并采用注意力机制捕获头实体与尾实体之间的依赖关系,构建了基于头实体注意力的联合抽取模型(JSA).在公共数据集纽约时报语料库(NYT)和采用远...  相似文献   

17.
中医领域知识主要是以文本的形式存在,具有无规律的语言特性,中医知识的有效挖掘对充分利用文本中蕴藏的经验知识具有重要作用,信息抽取任务是中医知识管理的重要子任务,而关系抽取又是信息抽取任务中的重要环节.针对单粒度信息关系抽取方法中存在的句意传递错误和文本语义丢失的问题,提出将句子中的多粒度信息应用于中医文本关系抽取任务,...  相似文献   

18.
为研究包含多个实体的关系抽取,提出聚合实体间不同长度路径的方案.考虑不同实体之间的相互关联,将整个句子表示为一个有向图,图中的节点为句子中的实体,边通过实体对和实体对的上下文来表示;将实体对间相同长度的路径通过注意力机制聚合成单一向量表示,不同长度路径对应的单一向量拼接,作为softmax分类器的输入.实验结果表明,在...  相似文献   

19.
基于多分类SVM-KNN的实体关系抽取方法   总被引:1,自引:0,他引:1  
实体关系抽取是信息抽取领域的重要研究课题之一。传统的实体关系抽取研究注重于从实体对出现的上下文中提取词法和语义等特征,然后利用分类器(如SVM)进行实体关系抽取,但该类方法忽略了分类器对实体抽取性能的影响。针对SVM分类器对超平面附近样本分类正确率低的问题,本文设计了一种基于双投票机制的SVM模糊样本选择方法。在此基础上,对确定区域样本直接使用SVM分类器进行分类,并利用KNN算法对模糊区域样本进行二次分类。在SemEval-2010评测任务提供的实体关系抽取数据上进行实验,实验结果表明该方法能较大提高实体关系抽取的性能。  相似文献   

20.
事件抽取(event extraction)是自然语言处理(natural language processing,NLP)中的一个重要且有挑战性的任务,以完成从文本中识别出事件触发词(trigger)以及触发词对应的要素(argument)。对于一个句子中有多个事件的多事件抽取任务,提出了一种注意力机制的变种——动态掩蔽注意力机制(dynamic masked attention network,Dy MAN),与常规注意力机制相比,动态掩蔽注意力机制能够捕捉更丰富的上下文表示并保留更有价值的信息。在ACE 2005数据集上进行的实验中,对于多事件抽取任务,与之前最好的模型JRNN相比,Dy MAN模型在触发词分类任务上取得了9. 8%的提升,在要素分类任务上取得了4. 5%的提升,表明基于Dy MAN的事件抽取模型在多事件抽取上能够实现领先的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号