首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于综合兴趣度的协同过滤推荐算法   总被引:5,自引:1,他引:5       下载免费PDF全文
秦光洁  张颖 《计算机工程》2009,35(17):81-83
针对传统协同过滤方法难以准确确定目标用户的最近邻居且推荐质量不高的问题,提出综合兴趣度的概念。综合兴趣度是对用户兴趣的完整描述,在此基础上给出一种新颖的基于综合兴趣度的协同过滤算法。实验结果表明,该算法可以提高最近邻居计算的准确性,进而提高推荐质量。  相似文献   

2.
传统的协同过滤算法只根据用户对资源的评分单方面地挖掘用户兴趣,未能对用户兴趣进行划分,忽略了用户兴趣随时间推移发生的变化,影响了推荐质量。为解决上述问题,提出一种能适应用户兴趣变化和有效挖掘用户兴趣的推荐算法。在传统协同过滤算法基础上考虑了标签对推荐的影响,通过标签聚类将用户的兴趣进行划分,并在标签和用户评分2个方面对目标用户的相似用户进行二重选择。考虑到用户可能会因时间的推移发生兴趣变化,在计算标签和评分权重时融入了时间因子,以对其在时间维度上进行修正。实验结果表明,改进后的算法能更好地挖掘用户兴趣,适应用户的兴趣变化,提高推荐精度。  相似文献   

3.
针对传统的协同过滤算法忽略了用户兴趣源于关键词以及数据稀疏的问题,提出了结合用户兴趣度聚类的协同过滤推荐算法。利用用户对项目的评分,并从项目属性中提取关键词,提出了一种新的RF-IIF (rating frequency-inverse item frequency)算法,根据目标用户对某关键词的评分频率和该关键词被所有用户的评分频率,得到用户对关键词的偏好,形成用户—关键词偏好矩阵,并在该矩阵基础上进行聚类。然后利用logistic函数得到用户对项目的兴趣度,明确用户爱好,在类簇中寻找目标用户的相似用户,提取邻居爱好的前◢N◣个物品对用户进行推荐。实验结果表明,算法准确率始终优于传统算法,对用户爱好判断较为准确,缓解了数据稀疏问题,有效提高了推荐的准确率和效率。  相似文献   

4.
一个面向新兴趣点发现的模糊兴趣挖掘算法   总被引:1,自引:0,他引:1  
本文在分析现有个性化推荐算法的基础之上,针对其难以发现新的用户兴趣点的不足,提出了一种面向新兴趣点发现的协作算法,建立了包括新兴趣点的多商品模糊兴趣模型。实验表明,该模型比现有模型更优。  相似文献   

5.
由于社交网络中人物与内容之间错综复杂的关系,如何合理地给用户推荐感兴趣的内容具有十分重要的意义。提出CCVR(Core user for Clustering interesting Vector for Recommend)算法。基于用户的兴趣矩阵,运用改进的K-means算法进行聚类从而推导类兴趣向量,由此预测用户对哪些内容标签感兴趣,从而形成推荐。实验结果证明CCVR算法具有良好的准确性。  相似文献   

6.
基于项目特征聚类的协同过滤推荐算法   总被引:1,自引:0,他引:1  
提出基于项目特征聚类的Item-based协同过滤推荐算法.该算法首先根据项目的属性特征对项目进行聚类,形成其特征相似群,然后采用一种基于预评分的相似性度量方法计算目标项的最近邻居,最终产生推荐.经实验验证该算法可以有效解决用户评分数据稀疏性和冷启动的难题,而且可以显著提高系统推荐质量.  相似文献   

7.
何明  肖润  刘伟世  孙望 《计算机科学》2017,44(8):230-235, 269
协同过滤直接根据用户的行为记录去预测其可能感兴趣的项目,是现今最成功、应用最广泛的推荐技术。推荐的准确度受相似性度量方法效果的影响。传统的相似性度量方法主要关注用户共同评分项之间的相似度,忽视了评分项目中的类别信息,在面对数据稀疏性问题时存在一定的不足。针对上述问题,提出基于分类信息 的评分矩阵填充方法,结合用户兴趣相似度计算方法并充分考虑到评分项目的类别信息,使得兴趣度的度量更加符合推荐系统应用的实际情况。实验结果表明,该算法可以弥补传统相似性度量方法的不足,缓解评分数据稀疏对协同过滤算法的影响,能够提高推荐的准确性、多样性和新颖性。  相似文献   

8.
何明  孙望  肖润  刘伟世 《计算机科学》2017,44(Z11):391-396
协同过滤推荐算法可以根据已知用户的偏好预测其可能感兴趣的项目,是现今最为成功、应用最广泛的推荐技术。然而,传统的协同过滤推荐算法受限于数据稀疏性问题,推荐结果较差。目前的协同过滤推荐算法大多只针对用户-项目评分矩阵进行数据分析,忽视了项目属性特征及用户对项目属性特征的偏好。针对上述问题,提出了一种融合聚类和用户兴趣偏好的协同过滤推荐算法。首先根据用户评分矩阵与项目类型信息,构建用户针对项目类型的用户兴趣偏好矩阵;然后利用K-Means算法对项目集进行聚类,并基于用户兴趣偏好矩阵查找待估值项所对应的近邻用户;在此基础上,通过结合项目相似度的加权Slope One算法在每一个项目类簇中对稀疏矩阵进行填充,以缓解数据稀疏性问题;进而基于用户兴趣偏好矩阵对用户进行聚类;最后,面向填充后的评分矩阵,在每一个用户类簇中使用基于用户的协同过滤算法对项目评分进行预测。实验结果表明,所提算法能够有效缓解原始评分矩阵的稀疏性问题,提升算法的推荐质量。  相似文献   

9.
针对评分数据稀疏的情况下传统相似性计算的不足,提出了一种基于项目之间相似性的协同过滤算法。该算法结合用户对项目的评分和项目之间的兴趣度进行项目之间的相似性计算,在一定程度上减小了评分数据稀疏的负面影响。实验结果表明,该算法在评分数据稀疏的情况下,能使推荐系统的推荐质量明显提高。  相似文献   

10.
针对信息检索分类技术发展的需求,本文通过对协同过滤推荐算法的综述,提出传统过滤算法无法适用于用户多兴趣下的推荐问题进行了剖析,提出了一种基于用户聚类的协同过滤推荐改进算法,提高聚类的精确性,根据用户兴趣相似的特征改进计算用户相似性的方法。  相似文献   

11.
传统的选修课系统存在结构性的不足和缺憾,为了避免高校学生盲目的选择选修课程,本文利用改进的协同过滤算法对高校学生进行个性化的选课推荐.本文首先介绍了两种推荐算法,并着重介绍基于协同过滤的推荐算法,并分析了两种算法的优缺点,最后针对协同过滤算法的数据稀疏性问题,提出了一种改进的协同过滤算法,即在协同过滤中加入基于内容的因素来解决这个问题.这种改进的协同过滤算法避免了传统协同过滤算法中存在的数据稀疏问题,以学生为本推荐适合学生的课程,满足学生学习的个性化要求.  相似文献   

12.
传统的协同过滤推荐算法受限于数据稀疏性问题,导致推荐结果较差.用户的社交关系信息能够体现用户之间的相互影响,将其用于推荐算法能够提高推荐结果的准确度,目前的社交化推荐算法大多只考虑了用户的直接社交关系,没有利用到潜在的用户兴趣偏好信息以及群体聚类信息.针对上述情况,提出一种融合社区结构和兴趣聚类的协同过滤推荐算法.首先通过重叠社区发现算法挖掘用户社交网络中存在的社区结构,同时利用项目所属类别信息,设计模糊聚类算法挖掘用户兴趣偏好层面的聚类信息.然后将2种聚类信息融合到矩阵分解模型的优化分解过程中.在Yelp数据集上进行了新算法与其他算法的对比实验,结果表明,该算法能够有效提高推荐结果的准确度.  相似文献   

13.
随着Web Mining技术的应用.基于Web Mining技术的推荐系统得到了迅速发展.本文就此系统作了一些改进,并提出了工作框架RESIK.  相似文献   

14.
唐泽坤 《计算机应用研究》2020,37(9):2615-2619,2639
推荐系统通过建立用户和信息产品之间的二元关系,利用用户行为产生的数据挖掘每个用户感兴趣的对象并进行推荐,基于用户的协同过滤是近年来的主流办法,但存在一定局限性:推荐时需要考虑全部用户,而单个用户往往只与少部分用户类似。为了解决这个问题,提出了基于改进Canopy聚类的协同过滤推荐算法,将用户模型数据密度、距离与用户活跃度结合,计算用户数据权值,对用户模型数据进行聚类。由于结合了Canopy的聚类思想,同一用户可以属于不同的类,符合用户可能对多领域感兴趣的情况。最后对每个Canopy中的用户进行相应的推荐,根据聚类结果与用户评分预测用户可能感兴趣的对象。通过在数据集MovieLens和million songs上与对比算法进行MAE、RMSE、NDGG三个指标的比较,验证了该算法能显著提高推荐系统预测与推荐的准确度。  相似文献   

15.
基于用户兴趣分类的协同过滤推荐算法   总被引:1,自引:1,他引:1  
在现代信息网络中,个性化的推荐系统已经成为用户和应用软件交互的关键部分.推荐算法是个性化推荐系统的核心,其中,协同过滤算法是至今应用最为成功的推荐算法之一.但传统的协同过滤算法没有考虑用户兴趣的多样性,对用户兴趣度量不准确,难以适用于用户多兴趣的推荐系统,提出了适应用户兴趣多样性的协同过滤算法并利用改进的模糊聚类算法搜...  相似文献   

16.
为了解决数字标牌广告投放的推荐问题,研究基于位置数据的推荐算法。在已有的基于矩阵分解思想的兴趣点推荐算法基础上,提出结合矩阵分解思想和商业地理信息数据的兴趣点推荐模型,并在基于位置的数字标牌广告数据上进行实验。实验结果表明,通过为矩阵分解附加商业地理信息的方法,解决了位置访问数据稀疏性的问题,并为数据类型单一,推荐依据不足的问题提供了有效的数据参考及实现方法。为数字标牌广告投放提供了重要的参考依据。  相似文献   

17.
邵超  宋淑米 《计算机科学》2021,48(z1):240-245
随着信息的海量增长,推荐系统有效缓解了信息爆炸带来的问题,其中协同过滤作为主流技术之一受到了广泛的关注.针对用户的兴趣偏好研究主要是基于商品标签的有监督数据集进行研究,忽略了无监督数据集,同时,在计算用户的兴趣偏好过程中也未能考虑到信任用户对用户兴趣的影响.为此,文中首先在无监督的项目数据集上采用矩阵分解模型得到项目的潜在特征向量,据此对项目进行聚类以表示项目的类别信息;然后,结合用户的信任关系和用户-项目评分矩阵构造用户的兴趣偏好矩阵;最后,为提高推荐效率,在用户的兴趣偏好矩阵上对用户进行聚类,在每个聚类簇内计算用户之间的相似度,从而实现推荐.在公开数据集上的实验结果表明,该算法能有效改善推荐结果的精确性,提升推荐质量.  相似文献   

18.
邵超  宋淑米 《计算机科学》2021,48(z1):240-245
随着信息的海量增长,推荐系统有效缓解了信息爆炸带来的问题,其中协同过滤作为主流技术之一受到了广泛的关注.针对用户的兴趣偏好研究主要是基于商品标签的有监督数据集进行研究,忽略了无监督数据集,同时,在计算用户的兴趣偏好过程中也未能考虑到信任用户对用户兴趣的影响.为此,文中首先在无监督的项目数据集上采用矩阵分解模型得到项目的潜在特征向量,据此对项目进行聚类以表示项目的类别信息;然后,结合用户的信任关系和用户-项目评分矩阵构造用户的兴趣偏好矩阵;最后,为提高推荐效率,在用户的兴趣偏好矩阵上对用户进行聚类,在每个聚类簇内计算用户之间的相似度,从而实现推荐.在公开数据集上的实验结果表明,该算法能有效改善推荐结果的精确性,提升推荐质量.  相似文献   

19.
兴趣点推荐是基于位置的社会网络的重要研究内容之一.传统的兴趣点推荐算法或者应用基本的协同过滤方法,或者在基本的协同过滤算法中引入空间特征,而没有充分发掘时序特征对推荐算法的重要性.为了进一步提高兴趣点推荐算法的性能,提出了一种面向时序特征的兴趣点推荐算法.给出了基本的基于用户的协同过滤方法,分别描述了时间特征和空间特征的作用,并给出了相应的模型表示方法;将时间特征和空间特征进行融合,提出了一种联合推荐算法.实验表明,提出的算法与其他相关算法相比,准确率和召回率显著提高,因此更适合兴趣点的推荐服务.  相似文献   

20.
现有的基于近邻的协同过滤推荐方法如基于KNN、基于K-means的协同过滤推荐常用来预测用户评分,但该方法确定邻居个数K非常困难且推荐准确率不高,难以达到理想推荐效果。从选择邻居用户这一角度出发,提出一种融合用户自然最近邻的协同过滤推荐算法(Collaborative Filtering recommendation integrating user-centric Natural Nearest Neighbor,CF3N),该算法首先自适应地寻找目标用户的自然最近邻居集,再融合目标用户的自然最近邻居集与活动近邻用户集,使用融合后得到的邻居集合预测目标用户评分。实验使用了MovieLens数据集,以RMSE和MAE为评测标准,比较CF3N、CF-KNN与INS-CF算法,结果显示在电影领域该算法的推荐准确率有显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号