首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对k-means初始聚类中心的优化   总被引:1,自引:0,他引:1  
针对传统k-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布选取初始聚类中心的改进k-means算法。该算法利用贪心思想构建K个数据集合,集合的大小与数据的实际分布密切相关,集合中的数据彼此间相互靠近。取集合中数据的平均值作为初始聚类中心,由此得到的初始聚类中心非常接近迭代聚类算法期待的聚类中心。理论分析和实验结果表明,改进算法能改善其聚类性能,并能得到稳定的聚类结果,取得较高的分类准确率。  相似文献   

2.
喻金平  郑杰  梅宏标 《计算机应用》2014,34(4):1065-1069
针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC算法的适应度函数以及一种基于全局引导的位置更新公式以提高迭代寻优过程的效率。将改进的人工蜂群算法与KMC算法结合提出IABC-Kmeans算法以改善聚类性能。通过Sphere、Rastrigin、Rosenbrock和Griewank四个标准测试函数和UCI标准数据集上进行测试的仿真实验表明,IABC算法收敛速度快,克服了原始算法易陷入局部最优解的缺点;IABC-Kmeans算法则具有更好的聚类质量和综合性能。  相似文献   

3.
k-means算法以其算法简单、计算效率高而被广泛应用在数据挖掘、机器学习、计算机视觉等领域。然而,k-means算法的性能严重依赖于其初始聚类中心的选取。不同的初始聚类中心导致k-means算法的聚类结果变化很大。一个合理的方式是选取处在数据相对密集区域的数据样本作为初始聚类中心。鉴于此,提出一种基于数据近邻图的k-means初始中心选取算法。该算法分为三个阶段:1)构建数据集的局部近邻图;2)选取初始聚类中心的候选集合;3)确定恰当的初始聚类中心。实验结果表明,该算法选取的初始聚类中心是合理的,同时,可以加快k-means的收敛速度。  相似文献   

4.
传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法.该算法多次调用传统k-means算法聚类,根据k个类中心的个体轮廓系数以及各样本与类中心的距离,自适应地选取优秀样本,求其均值作为初始聚类中心.在多个UCI数据集上的实验表明,该算法聚类时间短,具有较高的轮廓系数和准确率.  相似文献   

5.
梁冰  徐华 《计算机应用》2017,37(9):2600-2604
针对核模糊C均值(KFCM)算法对初始聚类中心敏感、易陷入局部最优的问题,利用人工蜂群(ABC)算法的构架简单、全局收敛速度快的优势,提出了一种改进的人工蜂群算法(IABC)与KFCM迭代相结合的聚类算法。首先,以IABC求得最优解作为KFCM算法的初始聚类中心,IABC在迭代过程中将与当前维度最优解的差值的变化率作为权值,对雇佣蜂的搜索行为进行改进,平衡人工蜂群算法的全局搜索与局部开采能力;其次,以类内距离和类间距离为基础,构造出适应KFCM算法的适应度函数,利用KFCM算法优化聚类中心;最后,IABC和KFCM算法交替执行,实现最佳聚类效果。采用3组Benchmark测试函数6组UCI标准数据集进行仿真实验,实验结果表明,与基于改进人工蜂群的广义模糊聚类(IABC-KGFCM)相比,IABC-KFCM对数据集的聚类有效性指标提高1到4个百分点,具有鲁棒性强和聚类精度高的优势。  相似文献   

6.
针对传统的k-means算法处理离散型数据的不足以及选取初始聚类中心的随机性等缺点,提出了一种基于改进的粒子群优化k-means算法,根据文中提供的优化算法寻找初始聚类中心后,在阀值范围内进行数据样本间的迭代更新,直至聚类中心稳定。经过实验结果验证分析表明,经过改进的粒子群优化k-means算法与传统的k-means算法相比,更具有良好的聚类收敛效果,聚类效果也相对稳定。  相似文献   

7.
传统k-means算法由于初始聚类中心的选择是随机的,因此会使聚类结果不稳定。针对这个问题,提出一种基于离散量改进k-means初始聚类中心选择的算法。算法首先将所有对象作为一个大类,然后不断从对象数目最多的聚类中选择离散量最大与最小的两个对象作为初始聚类中心,再根据最近距离将这个大聚类中的其他对象划分到与之最近的初始聚类中,直到聚类个数等于指定的k值。最后将这k个聚类作为初始聚类应用到k-means算法中。将提出的算法与传统k-means算法、最大最小距离聚类算法应用到多个数据集进行实验。实验结果表明,改进后的k-means算法选取的初始聚类中心唯一,聚类过程的迭代次数也减少了,聚类结果稳定且准确率较高。  相似文献   

8.
最小化误差平方和k-means初始聚类中心优化方法   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的k-均值算法对初始聚类中心和孤立点敏感,文中以最大程度地减少误差平方和为基本思想,提出一种最大化减少当前误差平方和的k-means初始聚类中心优化方法。在初始聚类中心选择阶段,每次增加聚类中心时,计算所有数据点作为当前聚类中心能够减少的误差平方和,选择能够最大化减少误差平方和的数据点作为聚类初始中心。利用真实数据集,同其他算法进行对比,实验结果表明该方法在选择初始聚类中心方面能够有效地减少聚类的迭代次数,提高聚类质量。同时人工模拟数据表明该方法对孤立点相对不敏感。  相似文献   

9.
针对传统K-means算法随机选取初始聚类中心,易造成准则函数收敛速度慢、聚类结果陷入局部最优等问题,提出一种基于网格和图论的初始聚类中心确定算法。该算法将数据空间网格化,通过在网格单元上形成树的连通分支来选取初始中心点。采用模拟和真实数据集对该算法选取的初始中心进行测试,实验结果表明,改进后的K-means算法在降低时间复杂度、减少迭代次数以及提高聚类精度方面都取到了较好的效果。  相似文献   

10.
在目前聚类方法中, k-means与势函数是最常用的算法,虽然两种算法有很多优点,但也存在自身的局限性。 k-means聚类算法:其聚类数目无法确定,需要提前进行预估,同时对初始聚类中心敏感,且容易受到异常点干扰;势函数聚类算法:其聚类区间范围有限,对多维数据进行聚类其效率低。针对以上两种算法的缺点,提出了一种基于 K-means 与势函数法的改进聚类算法。它首先采用势函数法确定聚类数目与初始中心,然后利用K-means法进行聚类,该改进算法具有势函数法“盲”特性及K-means法高效性的优点。实验对改进算法的有效性进行了验证,结果表明,改进算法在聚类精度及收敛速度方面有很大提高。  相似文献   

11.
基于k-means聚类算法的研究   总被引:4,自引:0,他引:4  
分析研究聚类分析方法,对多种聚类分析算法进行分析比较,讨论各自的优点和不足,同时针对原k-means算法的聚类结果受随机选取初始聚类中心的影响较大的缺点,提出一种改进算法.通过将对数据集的多次采样,选取最终较优的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响度大大降低;同时,在选取初始聚类中心后,对初值进行数据标准化处理,使聚类效果进一步提高.通过UCI数据集上的数据对新算法Hk-means进行检测,结果显示Hk-means算法比原始的k-means算法在聚类效果上有显著的提高,并对相关领域有借鉴意义.  相似文献   

12.
基于最大最小距离法的多中心聚类算法   总被引:19,自引:0,他引:19  
周涓  熊忠阳  张玉芳  任芳 《计算机应用》2006,26(6):1425-1427
针对k-means算法的缺陷,提出了一种新的多中心聚类算法。运用两阶段最大最小距离法搜索出最佳初始聚类中心,将原始数据集分割成小类后用合并算法形成最终类,即用多个聚类中心联合代表一个延伸状或者较大形状的簇。仿真实验表明:该算法能够智能地确定初始聚类种子个数,对不规则状数据集进行有效聚类, 聚类性能显著优于k-means算法。  相似文献   

13.
针对k-means聚类算法效率底、优化不足等问题,提出了一种基于变异的迭代k-meaus算法(ik-means)。该算法从k-means算法(随机k-means算法)所产生的初始解向量中随机选取一定比例的位置,对其中的类标号进行随机变异并优化;再通过多次迭代获得了相应的优化解。实验表明在数据集相同、基本k—means算法调用次数相同的条件下,ik-means算法相对于k-means算法具有运行效率高、解更优化的特点。  相似文献   

14.
针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算法。算法采用样本x i的t最近邻距离之和倒数度量其局部密度ρi,并定义样本x i的新距离δi,构造样本距离相对于样本密度的决策图。局部密度较高且相距较远的样本位于决策图的右上角区域,且远离数据集的大部分样本。选择这些样本作为初始聚类中心,使得初始聚类中心位于不同类簇,并自动得到数据集类簇数。为进一步优化聚类结果,提出采用类内距离与类间距离之比作为聚类准则函数。在UCI数据集和人工模拟数据集上进行了实验测试,并对初始聚类中心、迭代次数、聚类时间、Rand指数、Jaccard系数、Adjusted Rand index和聚类准确率等经典聚类有效性评价指标进行了比较,结果表明提出的K-medoids算法能有效识别数据集的真实类簇数和合理初始类簇中心,减少聚类迭代次数,缩短聚类时间,提高聚类准确率,并对噪音数据具有很好的鲁棒性。  相似文献   

15.
一种改进人工蜂群的K-medoids聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统K-medoids聚类算法初始聚类中心选择较敏感、聚类效率和精度较低、全局搜索能力较差以及传统蜂群算法初始蜂群和搜索步长随机选取等缺点,提出了一种基于粒子和最大最小距离法初始化蜂群和随着迭代次数增加动态调整搜索步长的人工蜂群算法,将改进的人工蜂群进一步优化K-medoids,以提高聚类算法的性能。实验结果表明:该算法降低了对噪声的敏感程度,具有较高的效率和准确率,较强的稳定性。  相似文献   

16.
为了改善K均值聚类算法对初始聚类中心敏感和易于陷入局部最优的不足,提出人工蜂群算法和K均值聚类算法相结合的想法,即基于人工蜂群优化的K均值聚类算法。通过全局寻优能力强的人工蜂群算法初始化K均值的聚类中心并优化聚类中心的位置,从而帮助K均值跳出局部极值,优化聚类效果。将混合聚类算法用Iris、Red Wine和New Red Wine数据集做聚类测试,结果表明该算法既克服了原始K均值聚类算法容易受初始聚类中心影响和不稳定的缺点,又具有良好的性能和聚类效果。  相似文献   

17.
现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来,计算出剩余数据集样本的平均密度,孤立点不参与聚类过程中各类所含样本均值的计算;在大于平均密度的密度参数集合中选择聚类中心,根据最小距离原则将孤立点分配给离它最近的聚类中心,直至将数据集完整分类。实验结果表明,这种基于平均密度优化初始聚类中心的k-means算法比现有的基于密度的k-means算法有更快的收敛速度,更强的稳定性及更高的聚类精度,消除了聚类结果对孤立点的敏感性。  相似文献   

18.
针对DDoS攻击检测中k-means算法对初始聚类中心敏感和要求输入聚类数目的缺点,提出了一种基于动态指数和初始聚类中心点选取的自适应聚类算法(Adaptive Clustering Algorithm),并使用该算法建立DDoS攻击检测模型。通过使用LLS_DDoS_1.0数据集对该模型进行测试并与k-means算法对比,实验结果表明,该算法提高了DDoS攻击的检测率,降低了误警率,验证了检测方法的有效性。  相似文献   

19.
多尺度的谱聚类算法   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种多尺度的谱聚类算法。与传统谱聚类算法不同,多尺度谱聚类算法用改进的k-means算法对未经规范的Laplacian矩阵的特征向量进行聚类。与传统k-means算法不同,改进的k-means算法提出一种新颖的划分数据点到聚类中心的方法,通过比较聚类中心与原点的距离和引入尺度参数来计算数据点与聚类中心的距离。实验表明,改进算法在人工数据集上取得令人满意的结果,在真实数据集上聚类结果较优。  相似文献   

20.
针对典型K-Means算法随机选取初始中心点导致的算法迭代次数过多的问题,采取数据分段方法,将数据点根据距离分成k段,在每段内选取一个中心作为初始中心点,进行迭代运算;为寻找最优的聚类数目k,定义了新的聚类有效性函数-聚类指数,包含聚类紧密度和聚类显著度两个指标,通过最优化聚类指数,在[1, n ]内寻找最优的k值。在IRIS数据集进行的仿真实验结果表明,算法的迭代次数明显减少,寻找的最优k值接近数据集的真实情况,算法有效性得到了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号