首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为改善红花籽粕可溶性膳食纤维的部分理化性质和其吸附特性,以红花籽粕为原料,分别考察碱-酶法、酶-高温蒸煮法、碱-高温蒸煮法3种不同改性方式对其可溶性膳食纤维(SDF)的持水力、膨胀力、持油力等部分理化性质及对葡萄糖、阳离子、胆固醇和亚硝酸根离子吸附能力的影响。结果表明,碱-高温蒸煮法优于其他两种方法,碱-高温蒸煮法改性的红花籽粕SDF的持水力、膨胀力和持油力最佳,分别为5.58 g/g、3.98 mL/g和4.38 g/g;对葡萄糖吸附能力为16.08 mmol/g,在1% NaOH添加量为1~4 mL时,阳离子吸附效果最佳;在pH为2和7时,对胆固醇吸附能力分别为7.68 mg/g、10.14 mg/g,对亚硝酸盐吸附能力为56.43 μg/g、30.53 μg/g。  相似文献   

2.
以茶树菇膳食纤维(DF)为原料,比较改性前后可溶性膳食纤维(SDF)得率以及理化性质,采用纤维素酶和高温高压对膳食纤维改性。在单因素基础上进行正交试验优化,得到两种最佳改性工艺条件。结果表明,纤维素酶改性茶树菇DF的最佳工艺条件为:料液比1:30,纤维素酶用量1.5%,酶解时间2.0 h。在最佳改性条件下,茶树菇SDF得率为4.9%。高温高压改性茶树菇DF的最佳工艺条件:料液比1:30,改性温度125℃,改性时间50 min。在最佳改性条件下,茶树菇SDF得率为6.8%。纤维素酶改性和高温高压改性均能改善膳食纤维的理化性质;高温高压法处理的膳食纤维在持水力、膨胀力、阳离子交换力、葡萄糖吸收力上要优于纤维素酶法。扫描电镜分析表明,两种改性方法使膳食纤维结构表面积明显增大且表面疏松多孔,与理化分析的结果一致。  相似文献   

3.
采用纤维素酶对小米麸皮膳食纤维进行改性处理,以可溶性膳食纤维(soluble dietary fiber,SDF)得率为指标,通过单因素试验及正交试验优化改性条件,并对处理前后小米麸皮膳食纤维的持水力、持油力、膨胀力及体外胆固醇吸附能力、亚硝酸根离子清除率进行分析。结果表明:在纤维素酶添加量4.5%、反应时间9 h、反应温度60 ℃的条件下,可溶性膳食纤维得率最高,为24.77%;改性后小米麸皮膳食纤维(cellulase modified -millet bran total dietary fiber,CM-MBTDF)持油力显著上升,在25、37 ℃分别为2.750、3.440 g/g,是小米麸皮膳食纤维(millet bran total dietary fiber,MBTDF)持油力的2.3 倍和2.9 倍,持水力和膨胀力显著下降。此外,体外清除胆固醇能力显著升高,在pH2.0、pH7.0 时体外胆固醇吸附量分别为23.68、22.28 μmol/L,是MBTDF 体外胆固醇吸附量的1.31、1.96 倍。在pH2.0 时MBTDF、CM-MBTDF 均表现出较高的亚硝酸根离子清除率,其中CM-MBTDF 能够加快亚硝酸根离子清除速度,在pH7.0 时CM-MBTDF 亚硝酸根离子清除率显著提高。  相似文献   

4.
以广佛手为原料,探究热水提取法(H)、高温蒸煮辅助热水浸提法(HTH)、超微粉碎辅助热水浸提法(UMH)、复合酶解法(E)、高温蒸煮辅助复合酶解法(HTE)和超微粉碎辅助复合酶解法(UME)六种方法对其膳食纤维性质的影响。结果表明:H-TDF的纯度(82.49 g/100 g)最高;E-TDF(59.15%)、UMH-IDF(48.45%)和HTE-SDF(23.68%)得率最高;结构方面,六种IDF和SDF均具有多糖特征结构,均为典型纤维素I型结构,均具有相似的表面结构;除H-SDF外,其余SDF的大分子量组分降解。理化性质方面,HTE-IDF的持水力(8.37 g/g)、持油力(2.11 g/g)、阳离子交换能力(0.24 mol/g)最高,而E-IDF的膨胀力(9.89 mL/g)最高;E-SDF的持水力(9.69 g/g)、膨胀力(7.42 mL/g)最高,UME-SDF的持油力(13.76 g/g)最高,E-SDF的阳离子交换能力(0.31 mol/g)最高。对于亚硝酸盐吸附能力,pH值2时UMH-IDF(7.28 mg/g)和H-SDF(3.80 mg/g)最高,pH值7时HTH-IDF(12.87 mg/g)和UME-SDF(1.55 mg/g)最高。综合分析,高温蒸煮辅助复合酶解法总体优于其他方法,且SDF得率最高,可推广应用。  相似文献   

5.
以新鲜豆渣为原料,探究高压均质改性和高静压改性的水溶性膳食纤维(soluble dietary fiber,SDF)得率以及改性后SDF理化性质和生理功能特性的变化。结果表明:高压均质改性在最优压力110 MPa条件下SDF得率为32.86%,高静压改性在进行高压蒸煮,最优400 MPa条件下SDF得率为7.56%,高压均质改性效果明显优于高静压改性(P<0.05);两种改性方式均能不同程度改善SDF的理化性质,促进其对胆酸和胆固醇的吸收,但降低了抗氧化效果。  相似文献   

6.
采用超微粉碎联合纤维素酶改性红枣果渣膳食纤维,探讨改性对枣渣膳食纤维SDF得率、持水力和吸附胆酸钠能力的影响。在单因素试验的基础上,以SDF得率为响应值,利用响应面法优化改性条件。结果表明:超微粉碎联合纤维素酶改性最佳工艺条件为超微粉碎10s,0.34%纤维素酶在pH 4.86,49℃下酶解1.43h,SDF得率为15.47%±0.37%,与模型预测值15.76%较为一致,将改性枣渣膳食纤维添加于果冻制作的成品呈红棕色,酸甜可口,弹性、咀嚼性与凝聚性适中,感官品质良好。  相似文献   

7.
本文以滇橄榄果渣为原料,优化其膳食纤维的碱法提取工艺,同时探讨了滇橄榄果渣、总膳食纤维(total dietary fiber,TDF)、水不溶性膳食纤维(insoluble dietary fiber,IDF)及水溶性膳食纤维(soluble dietary fiber,SDF)的理化性质及其体外吸附能力。结果表明:碱法提取滇橄榄果渣膳食纤维的最优工艺为:NaOH浓度为8 g/L,料液比为1:35(g:mL),70 ℃处理40 min,IDF和SDF的得率分别为61.72%±0.04%、17.57%±0.03%。滇橄榄果渣及其膳食纤维均具有较好的水化特性和持油力,TDF的持水力最低但膨胀力最高,与滇橄榄果渣、SDF和IDF存在显著性差异(P<0.05);SDF的持油力、膨胀力和对脂肪的吸附能力均较低,但在模拟胃环境(pH2)的条件下对胆固醇和NO2?的吸附能力均高于滇橄榄果渣、TDF和IDF,且存在显著性差异(P<0.05)。滇橄榄果渣及其膳食纤维对胆固醇和NO2?的吸附与pH有关,TDF和SDF在模拟胃环境的条件下对胆固醇的吸附能力强于模拟小肠环境,滇橄榄果渣和IDF则相反;四个样品在模拟胃环境的条件下对NO2?的吸附能力均强于模拟小肠环境。本文对滇橄榄果渣膳食纤维的提取及性能研究,可为其在保健食品中的应用提供一定的理论参考。  相似文献   

8.
采用挤压蒸煮加工方法对脱脂米糠进行改性,研究挤压蒸煮加工米糠对米糠可溶膳食纤维(SDF)增加和膳食纤维结构性质的影响。以SDF含量为指标,通过单因素实验确定米糠最适挤压条件为:水分含量为35%、挤压温度为160 ℃、螺杆转速为250 r/min。经过挤压蒸煮加工后,米糠SDF含量从4.34%增至14.34%。米糠SDF的微观结构膨胀疏松,持水力、膨胀力显著增加,而持油力显著降低,红外光谱并未产生新的吸收峰,峰位置整体向长波数方向移动,吸收强度降低,结晶衍射峰的位置没有发生明显变化,相对结晶度有所降低;米糠不溶膳食纤维(IDF)的微观结构被破坏,膨胀力显著提高,持油力显著降低,持水力无明显变化。红外光谱性质和结晶性质结果均表明挤压蒸煮加工后脱脂米糠IDF中仍存在纤维素和半纤维素,但其结构受到破坏,相对结晶度降低。挤压蒸煮加工能改变脱脂米糠膳食纤维的结构性质,为膳食纤维产品的开发和应用提供了理论基础。  相似文献   

9.
以金针菇膳食纤维(dietary fiber,DF)为原料(其中可溶性膳食纤维(soluble dietary fiber,SDF)质量分数8.2%),分别采用纤维素酶法和高温蒸煮法对其进行改性处理,在单因素试验基础上通过正交优化试验得到改性最佳工艺优化参数。纤维素酶法处理最佳工艺为液料比35∶1、纤维素酶用量1.5%(以体系质量计)、酶解时间2 h,在此工艺下SDF得率为16.2%。高温蒸煮法处理最佳工艺为液料比30∶1、蒸煮温度125 ℃、蒸煮时间50 min,在此工艺下SDF得率为20.4%。将以上两种改性方法得到的改性DF与未改性DF进行理化性质(包括阳离子交换力、胆固醇吸附力和葡萄糖吸收能力)对比,并进行扫描电子显微镜和傅里叶变换红外光谱分析,结果发现高温蒸煮改性DF整体上各项性质均优于纤维素酶改性DF。此外,建立小鼠高脂肥胖模型,利用高温蒸煮改性后的金针菇DF饲料饲喂小鼠,通过对小鼠体质量,血脂中甘油三酯、总胆固醇、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇,血清中超氧化物歧化酶和谷胱甘肽过氧化物酶等指标水平的测定评价改性DF的生理活性,结果显示添加高温蒸煮改性DF能够改善高脂肥胖小鼠的生理指标,说明改性后的金针菇DF保持了良好的生理活性。  相似文献   

10.
该研究采用胶体磨湿法粉碎法、超声波辅助酸法、纤维素酶法3种方法处理甘薯渣不溶性膳食纤维(insoluble dietary fiber,IDF),比较改性前后IDF粒径分布、微观形态,并测定分析其理化性质。结果表明,与未改性甘薯渣IDF相比,3种改性方法改性之后,甘薯渣IDF的粒径、分散指数显著降低(P<0.01),持油力、持水力存在显著差异(P<0.01),吸附亚硝酸盐及胆固醇能力都有不同程度的提升。整体而言,这3种改性方法对甘薯渣IDF改性都有效果,并且胶体磨湿法粉碎法改性对甘薯渣IDF的持油力、持水力、吸附亚硝酸盐及胆固醇能力效果最好。甘薯渣改性的IDF可作为功能性成分应用于多种食品。  相似文献   

11.
以葵花粕为试验对象,采用水提醇沉法制备得到水溶性膳食纤维(SDF)和不溶性膳食纤维(IDF);运用超声波改性处理,比较改性前、后SDF和IDF的理化性能、热稳定性以及内部微观结构的变化。结果表明:超声波改性后的可溶性膳食纤维(USDF)的持水力、持油力分别增加3.09%和23.73%,不可溶性膳食纤维(UIDF)的持水力和持油力分别提高8.96%和17.45%。在对1,1-二苯基-2-三硝基苯肼自由基(DPPH)和对2,2’-联氨-双-3-乙基苯并噻唑啉-6-磺酸自由基(ABTS+)的清除作用方面,UIDF作用优于IDF;热重图谱分析表明改性前、后膳食纤维均表现出3个阶段的失重。激光粒度仪分析表明UIDF颗粒粒径减小,分布更集中;扫描电子显微镜分析表明USDF表面变平整,而 UIDF凹陷和皱裙增多;傅里叶变换红外光谱表明USDF、UIDF特征吸收峰的峰型和基本位置未发生变化,而部分峰的强度减弱;X-射线衍射分析表明超声波改性不会导致SDF和IDF的晶体结构发生变化;气相色谱-质谱联用仪分析葵花粕及其膳食纤维组分主要由阿拉伯糖、鼠李糖、木糖、甘露糖、半乳糖和葡萄糖等6种单糖组成。  相似文献   

12.
对芦笋皮和茎中的膳食纤维进行提取以及功能性质的比较。采用化学法提取了可溶性和不溶性膳食纤维,测定了其持水性、溶胀性、持油力、对胆固醇和胆盐的吸附作用以及对阳离子的交换能力。结果表明:在酸提时间4 h、酸浓度1%、碱浓度0.9%、碱提时间1.5 h的条件下芦笋皮中膳食纤维得率最高(SDF 12.75%,IDF 60.29%),在酸提时间4 h、酸浓度2%、碱浓度0.6%、碱提时间1 h的条件下芦笋茎中膳食纤维得率最高(SDF 11.96%,IDF 36.51%);芦笋皮膳食纤维的性能优于芦笋茎,IDF的持水性、溶胀性、持油力和对胆盐的吸附能力优于SDF,而SDF对胆固醇的吸附能力和对阳离子的交换能力则优于IDF。因此,芦笋皮膳食纤维的得率更高、性能更优。  相似文献   

13.
以绿豆皮膳食纤维为试验对象,采用挤出改性、酶解改性、挤出-酶解复合改性3种处理方式对其进行改性处理。以持水力、持油力、膨胀力、阳离子交换能力、吸附葡萄糖能力和吸附胆固醇能力为评价指标,研究改性处理对绿豆皮膳食纤维功能特性的影响。以扫描电子显微镜、X射线衍射和傅里叶变换红外光谱法表征改性处理对绿豆皮膳食纤维结构的影响。结果表明:挤出-酶解复合改性处理的效果最明显,其功能特性得到显著改善,持水力、持油力、膨胀力、阳离子交换能力、吸附葡萄糖能力分别是未改性绿豆皮膳食纤维的1.46,1.15,1.87,6.98,1.66倍;在pH 2和pH 7条件下对胆固醇的吸附能力分别达(2.38±0.05)mg/(mL·g)和(3.45±0.12)mg/(mL·g)。扫描电子显微镜观察结果表明,挤出-酶解复合改性处理后的绿豆皮膳食纤维表面结构粗糙、疏松,出现多层褶皱或多孔性特征。X射线衍射、傅里叶变换红外光谱结果表明,挤出-酶解复合改性处理后的绿豆皮膳食纤维的相对结晶度最低,各纤维素组分重新分布,部分不溶性膳食纤维(IDF)向可溶性膳食纤维(SDF)转化。结论:挤出-酶解复合改性处理是一种改性膳食纤维的较...  相似文献   

14.
利用酶解-挤出复合法对绿豆皮膳食纤维进行改性,采用单因素和正交实验对影响改性工艺的主要因素进行优化,通过扫描电镜、傅里叶变换红外光谱和X-射线衍射对绿豆皮膳食纤维改性前后的结构进行表征分析,以持油力、持水力、膨胀力、阳离子交换能力和吸附胆固醇能力为绿豆皮膳食纤维理化性能的考察指标。结果表明,当纤维素酶添加量120 U/g、酶解时间4 h、水分添加量70%、挤出温度140 ℃时,可溶性膳食纤维得率为(12.74±0.29)%。改性处理后绿豆皮膳食纤维的表面结构疏松、粗糙,出现多孔性、多层褶皱特征,相对结晶度明显下降,各纤维素组分重新分布,而且有一部分不溶性膳食纤维转化为可溶性膳食纤维。改性处理后绿豆皮膳食纤维的持油力、持水力、膨胀力、阳离子交换能力和吸附胆固醇能力均显著增加。  相似文献   

15.
以大豆皮为原料,采用纤维素酶联合半纤维素酶制备大豆皮可溶性膳食纤维(soluble dietary fiber,SDF),通过单因素及响应面试验设计,以大豆皮SDF得率为考察指标,优化其酶解工艺,并测定其持水力、膨胀力及持油力。结果表明,大豆皮SDF最优酶解工艺为料液比1∶20(g/mL)、酶添加量0.85%、酶解时间5 h、酶解温度45℃、酶解pH4.6,该条件下大豆皮SDF得率为12.17%,制备的大豆皮SDF具有良好的持水力、膨胀力及持油力。  相似文献   

16.
以玉米皮为原料,采用猴头菌固态发酵的方式生物改性玉米皮可溶性膳食纤维(soluble dietary fiber,SDF),研究猴头菌接种量、培养温度和培养时间对玉米皮可溶性膳食纤维含量的影响,通过单因素试验和响应面试验优化得到的最优工艺条件为接种量8%、培养温度25℃、培养时间7 d,该条件下实测玉米皮可溶性膳食纤维含量为(8.39±0.14)g/100 g。通过研究发酵前后玉米皮可溶性膳食纤维的吸附特性发现,发酵后玉米皮可溶性膳食纤维的亚硝酸盐吸附能力、胆固醇吸附能力和胆酸盐吸附能力均有所提高。  相似文献   

17.
以油橄榄的果肉和核壳为原料,分别制备其水溶性膳食纤维(Soluble Dietary Fiber,SDF)、不溶性膳食纤维(Insoluble Dietary Fiber,IDF)和总膳食纤维(Total Dietary Fiber,TDF),并探究其功能特性及微观结构。结果表明:油橄榄果肉和核壳中TDF含量分别达79.28 g/100 g和86.13 g/100 g,其中以IDF为主。在两种原料中,果肉膳食纤维的功能特性整体强于核壳膳食纤维。其中以果肉SDF的功能特性最优,其持水力为5.15 g/g,膨胀力为5.78 mL/g,持油力为2.45 g/g,葡萄糖吸附能力为21.11 mg/g,胆酸盐吸附能力为84.81 mg/g,胆固醇吸附能力为34.10 mg/g,亚硝酸盐吸附能力为834.57μg/g,扫描电镜显示其颗粒小而疏松,比表面积大。综上,油橄榄的果肉和核壳是良好的膳食纤维来源,其膳食纤维具有一定的辅助减肥、稳定餐后血糖和吸附胆固醇等生理保健作用,可为油橄榄果深加工产业提供一定理论基础。  相似文献   

18.
以绿豆皮为原料,采用高温蒸煮-复合纤维素酶和木聚糖酶法提取可溶性膳食纤维,探讨不同因素对得率的影响,并探究其体外降血糖作用。结果表明,最佳条件为料液比1∶30 g/mL、蒸煮温度120℃、蒸煮45 min、木聚糖酶0.75%、纤维素酶1.5%、酶解120 min、温度50℃,得率20.12%;高温蒸煮-复合酶处理后,持水力、持油力、膨胀力分别提升了49.86%、136.96%、103.54%;葡萄糖扩散抑制能力在60 min时提升了68.92%,葡萄糖吸附力在可溶性膳食纤维浓度为0.5%时提升了112.68%,α-淀粉酶最大抑制率提升了54.41%;动力学实验表明,可溶性膳食纤维处理前后对α-淀粉酶抑制类型均为非竞争型抑制。  相似文献   

19.
以小米膳食纤维为对象,研究蒸煮对其结构和功能的影响。采用酶法提取蒸煮和未蒸煮的小米不溶性膳食纤维(IDF)和可溶性膳食纤维(SDF),对其进行结构表征,并比较样品的膨胀力(SC)、持水力(WHC)、持油力(OHC)、胆固醇和亚硝酸盐吸附能力等功能特性。结果表明,蒸煮后的不溶性膳食纤维(C-IDF)表面孔洞增多,褶皱明显,结构更为松散,蒸煮后的可溶性膳食纤维(C-SDF)的表面出现较大的团聚体,相互堆积形成紧密相连的组织;傅里叶红外光谱表明C-IDF和C-SDF均具有典型的多糖红外光谱特征,C-IDF的吸收峰强度增加、而C-SDF的吸收峰强度减弱;X射线衍射表明C-IDF和C-SDF结晶区被破坏,晶体结构由有序向无序转变;C-IDF和C-SDF的粒径分布峰宽度变小,峰值升高,C-IDF体积平均径减小,C-SDF体积平均径增加;热特性表明C-IDF和C-SDF热稳定性升高。与IDF相比,C-IDF的SC、WHC、OHC、胃环境胆固醇吸附量、胃环境和肠环境亚硝酸盐吸附量分别升高了9.3%、17.2%、26.9%、10.7%、2.8%、3.7%;与SDF相比,C-SDF的SC、胃环境和肠环境亚...  相似文献   

20.
研究了低温真空干燥和真空冷冻干燥对小麦膳食纤维理化性质的影响情况。实验发现经过两种方式所制备的小麦膳食纤维具有较强的持水力、膨胀力、吸附脂肪和亚硝酸盐的能力,但是除两者之间的持水力和吸附亚硝酸盐的能力无明显区别外,经过低温真空干燥制备的不溶性膳食纤维膨胀力强于经过真空冷冻干燥制备的膳食纤维膨胀力,而且小麦膳食纤维吸附饱和脂肪的能力强于吸附不饱和脂肪的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号