共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
以醋酸镁为Mg2+的掺杂源,在空气气氛下采用分段固相法合成了掺杂Mg2+的尖晶石Li4Ti5O12。通过扫描电镜(SEM)、X射线衍射(XRD)及电化学等测试手段对材料的性能进行表征。结果表明:掺杂未有改变材料的尖晶石结构,掺杂后样品的0.2 C首次放电比容量比未掺杂样品略有降低,但显示出优异的电化学倍率性能和循环稳定性,以10 C充放电时,放电比容量是未掺杂的2.2倍,且10次循环之后容量没有明显衰减。电化学交流阻抗研究表明,掺杂Mg之后材料的电荷转移阻抗Rct从130Ω降到20Ω,显著地提高了材料的电子导电性。 相似文献
4.
5.
6.
为获得工艺和电化学性能俱佳的硅负极材料,以丙烯酰胺和硅粉为原料通过简单的合成工艺制备了一种复合物。借助X射线衍射技术、粒径分析和扫描电镜对该材料进行表征,结果表明制备的材料成分为硅、碳复合物,平均粒径为5.07μm,位于商用锂离子电池要求的负极材料粒径范围,具有出色的工艺性能。将该材料匹配高镍三元材料组装成纽扣电池进行电化学测试,它又表现出优异的电化学性能。其初始库仑效率为81.5%,放电比容量高达1 200 mAh/g以上。在1 C(1 200 mA/g)充放电速率下经过50个循环,容量保持率高于99%。鉴于其优良的工艺和电化学性能,该材料可望在高比能动力锂离子电池中广泛应用,推动我国新能源产业的发展。 相似文献
7.
8.
在研究硅/碳复合负极材料和人造石墨负极材料混合负极的比容量与电极膨胀率之间的变化关系的基础上,通过配方优化,成功制作了硅/碳复合负极材料与人造石墨负极材料混合负极的18650型锂离子电池。采用扫描电子显微镜法(SEM)、电化学交流阻抗频谱(EIS)等技术,分析了循环前后负极的变化,研究了氟代碳酸乙烯酯(FEC)添加剂对电池性能的影响。结果表明:FEC加入量较高时,可与硅负极材料形成更加稳定的SEI膜,抑制负极材料的粉化,电池180次循环后,容量保持率达到71.3%,循环性能得到显著提高。 相似文献
9.
10.
11.
分别采用乳化沥青和固体粉末沥青为包覆剂制备了硅碳锂离子电池负极材料,对材料进行了XRD、SEM表征,以及进行了循环伏安法等测试。使用乳化沥青为包覆剂制备的硅碳复合负极材料为类球状,形貌规整,首次容量为522mAh/g,效率达88.8%,循环10次后平均每周容量衰减1.6mAh/g。使用固体粉末沥青为包覆剂制备的硅碳负极材料为无规则形状,首次容量为480mAh/g,首次库伦效率为87.9%,循环10次后平均每周容量衰减1.9mAh/g。使用乳化沥青为包覆剂整体性能要好于使用固体粉末沥青为包覆剂制备的硅碳复合负极材料。 相似文献
12.
13.
以CH3COOLi·2 H2O和Ti(OC4H9)4为原料,C6H15NO3为络合剂,CH3CH2OH为溶剂,采用溶胶-凝胶法制备Li4Ti5O12材料,并且复合掺杂Mg、Mn、Ni、Co四种金属。采用X射线衍射(XRD)、扫描电镜、电化学阻抗(EIS)分析研究了材料的结构、形貌和电化学性能。结果表明:掺杂Mn、Mg两种金属的Li4-x MgxTi5-yMnyO12材料,其中x=0.02,y=0.02时所制备的Li3.98Mg0.02Ti4.98Mn0.02O12样品,具有良好的电化学性能。在1~2.5V进行充放电,0.1C时,首次放电容量达到154.7 mAh/g。在0.2C、0.5C、1.0C下循环20次后,稳定在107.2、99.3、73.9 mAh/g。再次进行0.1C充放电时,放电比容量为110.8 mAh/g,容量保持率为75%。掺杂金属改善了Li4Ti5O12材料的导电性,提高了该材料的倍率性能以及循环性能。 相似文献
14.
15.
16.
17.
18.
碳包覆硅/碳复合材料的制备与性能研究 总被引:1,自引:0,他引:1
为提高锂离子电池商容量Si/C复合负极材料的电化学性能,采用喷雾干燥法制备了核壳结构的碳包覆Si/C复合材料.碳包覆Si/C复合材料为近球形颗粒,形貌规整,粒度分布均匀,呈正态分布,其物相结构和嵌脱锂的电化学反应与Si/C复合材料保持一致.碳包覆后,减小了充放电过程中复合材料电极的极化,电压滞后现象得到了显著的改善.碳包覆Si/C复合材料的最大放电比容量为512 mAh/g,略低于包覆前的材料,但循环稳定性大大提高,50次循环后的容量保持率为96%. 相似文献
19.
采用喷雾干燥和高温固相法制备球形尖晶石型Li4Ti5O12,按计量比将TiO2、LiOH和可溶性淀粉三种化合物一起球磨混合成均匀浆料,通过喷雾干燥得到球形前驱体,再经过850℃热处理16 h制得碳包覆的球形Li4Ti5O12材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及电化学性能测试等分析手段表明,合成出的样品为纯相Li4Ti5O12;粉末颗粒呈球形,平均粒径约为15μm;0.1、1.0、2.0倍率下的首次放电比容量分别达到167.9、159.1、151.9 mAh/g,并表现出优良的充放电循环性能。 相似文献