首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用熔融共混法制备了聚氯乙烯/多壁碳纳米管(PVC/MWCNT)复合材料,利用热失重法研究了MWCNT对PVC热降解及热寿命的影响,采用Kissinger法和Friedman法计算了复合材料的热降解动力学参数。结果表明,添加MWCNT后,复合材料的初始降解温度T0和最大热失重速率温度Tm较纯PVC均有提高,含量4%时,T0和Tm分别提高了18.9℃和22.76℃。Kissinger法计算的活化能随MWCNT含量增加呈先增大后减小趋势,在含量4%时复合材料两个失重阶段分别提高了82.23 kJ/mol和18.54 kJ/mol,Friedman法计算得到的活化能变化趋势与Kissinger法一致。  相似文献   

2.
采用溶液共混法制备了聚甲基丙烯酸甲酯/多壁碳纳米管(PMMA/MWCNT)复合材料,利用热重法研究了不同气氛下复合材料的热降解,并采用Flynn-Wall-Ozawa、Kissinger和Friedman等3种方法计算其动力学参数。结果表明,MWCNT的添加量为3 %时,在氮气和氧气中复合材料的初始降解温度较纯PMMA分别提高了54.62 ℃和70.4 ℃,最大热失重速率温度也有一定程度的提高,说明MWCNT能显著提高PMMA的低温热稳定性,尤其是在有氧环境中,而对高温热稳定改善不明显;采用Kissinger法、Flynn-Wall-Ozawa法和Friedman法计算得到的活化能(Ea)变化趋势一致,当MWCNT的添加量为3 %时,Ea较纯PMMA提高最多,在氮气中分别为45.99、95.10、72.46 kJ/mol,在氧气中分别增加53.42、120.63、110.41 kJ/mol;由Friedman法求解出复合材料的反应级数(n)在氮气中约为1.5,在氧气中约为0.9。  相似文献   

3.
李丽霞 《塑料科技》2020,48(6):33-38
利用热重法研究了石墨烯(GE)和多壁碳纳米管(MWCNTs)对聚甲基丙烯酸甲酯(PMMA)热稳定性的影响,并采用Kissinger法、Friedman法和Coats-Redfern法计算了复合材料的热降解动力学参数。结果表明:PMMA的热失重包含两个失重阶段,添加GE和MWCNTs并没有改变PMMA的热失重历程,但是T0、Tm和Tp均随MWCNTs含量的增加呈先增大后减小的趋势,添加量为3%时达到最大,分别较纯PMMA提高了57.23、14.13和20.55℃,而GE的添加没有明显提高PMMA的热稳定性。三种计算方法得到的复合材料的热降解活化能(Ea)随填料含量增加变化趋势一致,在MWCNTs含量为3%、GE含量为4%时,Ea值分别达到最大值,Friedman法计算的PMMA的反应级数为1.6,GE/PMMA复合材料的平均反应级数为1.9,MWCNTs/PMMA复合材料的平均反应级数为1.5。  相似文献   

4.
采用乙烯基硅烷在氢氧化镁(MH)表面引入乙烯基后与苯乙烯原位聚合,制备苯乙烯原位共聚合改性MH。将改性前后的MH、微胶囊红磷(MRP)、高抗冲聚苯乙烯(HIPS)按不同配比熔融复合制备HIPS/MH和HIPS/MH/MRP复合材料。研究了复合材料的力学性能和阻燃性能。结果表明:改性后的MH能显著提高复合材料的冲击强度。改性前后的MH与MRP的协同阻燃效应使HIPS/MH复合材料极限氧指数提高到28.9%,UL 94垂直燃烧达到V-0级。MH与MRP的协同作用增加了HIPS/MH复合材料的点燃难度,有效抑制了HIPS的热释放速率和烟释放速率,对HIPS起到良好的阻燃作用。  相似文献   

5.
采用熔融共混法制备了不同质量分数的聚丙烯/多壁碳纳米管(PP/MWNTs)复合材料,研究了MWNTs的含量对复合材料的拉伸、冲击等力学性能及动态力学性能的影响,并利用热重法研究了复合材料的热稳定性,采用Kissinger法计算了复合材料的热降解动力学参数。结果显示:MWNTs的质量分数为1.5%时,复合材料的拉伸强度较纯PP提高了13.6%,冲击强度提高了56.1%;MWNTs含量为2%时,复合材料的储能模量达到最大,含量为1.5%时损耗模量达到最大,随着MWNTs含量的增加,内耗峰强度呈先增大后减小的趋势,在含量为1.5%时达到最大值;TG和DTG曲线表明,MWNTs的含量为1.5%时,起始降解温度较纯PP提高最多,且活化能最大,说明显著提高了复合材料的热稳定性。  相似文献   

6.
用熔融共混法制备了纳米金刚石(Nano-diamond)/聚丙烯复合材料,利用热重分析(TGA)法研究了复合材料的热降解动力学,并采用Flynn-Wall-Ozawa,Friedman和Kissinger三种方法计算了共混物的热降解反应活化能(Ea)。结果表明,复合材料呈现单一阶段的降解过程,Nano-diamond有助于提高材料的热稳定性。复合材料的热稳定性随Nano-diamond含量的增加先增大后减小,当其含量为3%时,复合材料的热稳定性最好,热降解反应的Ea提高了5-30 kJ/mol。  相似文献   

7.
刘峰  李登辉 《塑料工业》2020,48(3):62-65,72
使用双螺杆挤出机制备了一系列质量比的阻燃聚苯醚(PPE)/高抗冲聚苯乙烯(HIPS)复合材料,根据PPE黏度不同分为PPE-35/HIPS体系和PPE-45/HIPS体系,研究了不同黏度的PPE及不同质量比PPE/HIPS对复合材料的力学性能、热变形温度(HDT)、熔体质量流动速率(MFR)的影响,并筛选不同牌号HIPS对复合材料性能的影响。结果表明,PPE/HIPS复合材料中,拉伸强度、弯曲强度随HIPS含量的增加呈线性下降趋势,PPE-45/HIPS体系的拉伸强度和弯曲强度普遍优于PPE-35/HIPS体系;冲击强度存在一个树脂最优质量比,PPE-35/HIPS体系中树脂最优质量比为70∶30,PPE-45/HIPS体系中树脂最优质量比为60∶40。HDT随HIPS含量的增加呈线性下降趋势,而MFR随HIPS含量增加呈线性递增趋势,PPE-35/HIPS体系的HDT低于PPE-45/HIPS体系而MFR高于PPE-45/HIPS体系。复合材料的强度由主体树脂PPE决定,HIPS (476L)对PPE-35的增韧改性效果更好,成型加工性能更佳。  相似文献   

8.
动态熔融插层HIPS/蒙脱土复合材料阻燃性能的研究   总被引:4,自引:1,他引:4  
采用动态熔融法分别制备高冲击强度聚苯乙烯/有机蒙脱土(HIPS/OMMT)复合材料和高冲击强度聚苯乙烯/钠基蒙脱土(HIPS/Na+-MMT)复合材料,利用锥形量热仪测试复合材料的阻燃性能,结果表明:HIPS/OMMT复合材料的热释放速率(HRR)、生烟速率(SPR)、质量损失速率(MLR)等燃烧性能参数均明显降低,表现出较好的阻燃性和抑烟性;Na+-MMT阻燃HIPS与OMMT阻燃HIPS复合材料比较,HIPS/OMMT复合材料的阻燃性明显优于HIPS/Na+-MMT。通过研究复合材料的阻燃性能,结合燃烧残余物的微观结构和宏观形貌分析,探讨了复合材料的阻燃机理。  相似文献   

9.
采用溶液共混法制备了聚甲基丙烯酸甲酯/多壁碳纳米管(PMMA/MWCNT)复合材料,对其拉伸、冲击等力学性能进行了测试,并利用动态热机械分析仪测试了复合材料的动态力学性能。结果显示:随着MWCNT含量的增加,复合材料的拉伸强度和冲击强度呈现先增加后减小的趋势,在质量分数2%时达到最大值,比纯PMMA分别提高了63.6%和104%;当MWCNT质量分数为1%时,复合材料的储能模量出现最大值;温度低于玻璃化转变温度(约60℃)时,损耗模量低于纯PMMA,高于玻璃化转变温度时,损耗模量高于纯PMMA;损耗峰温度值(T_g)明显升高,由纯PMMA的59.2℃升高到67.9℃。  相似文献   

10.
聚磷酸铵阻燃体系对HIPS/OMMT阻燃研究   总被引:1,自引:0,他引:1  
将钠基蒙脱土(Na~ -MMT)有机化改性,制成有机蒙脱土(OMMT),采用熔融插层法分别制备HIPS/OMMT复合材料和聚磷酸铵(APP)体系阻燃的HIPS/OMMT复合材料。结果表明,HIPS/OMMT复合材料具有一定的阻燃性能,但阻燃性能的提高比较有限;与仅添加OMMT时相比,APP体系阻燃的HIPS/OMMT复合材料的阻燃性和抑烟性均得到进一步提高,以APP、季戊四醇(PER)和硼酸锌(ZB)为膨胀型阻燃剂对HIPS/OMMT复合材料阻燃性和抑烟性的提高更为显著。力学性能测试结果表明,APP体系的加入对复合材料的拉伸强度和冲击强度都有负面影响。  相似文献   

11.
本文对HIPS/SBS/TiO_2复合材料的力学性能和形态结构进行了研究,随SBS含量的增加,其拉伸强度下降,而冲击强度和伸长率明显增加,当SBS含量在30%以内时,共混物的粘度变化不大。TiO_2的加入使HIPS/SBS的力学性能下降,这是由于TiO_2分布不均造成的,用偶联剂对TiO_2进行表面处理,有利于TiO_2在HIPS/SBS/TiO_2复合材料中的均匀分散,提高了材料的力学性能和着色效果。  相似文献   

12.
HIPS的阻燃及增韧研究   总被引:2,自引:0,他引:2  
用纳米改性氢氧化铝(CG-ATH)和红磷母粒对高抗冲聚苯乙烯(HIPS)进行协同阻燃,用(苯乙烯/丁二烯/苯乙烯)共聚物(SBS)对所得的阻燃HIPS进行增韧,研究了阻燃剂和增韧剂对复合材料力学性能和阻燃性能的影响。结果表明,CG-ATH与红磷母粒之间有很好的协同阻燃作用,当CG-ATH用量为20%、红磷母粒用量为12%时,HIPS的垂直燃烧等级达到FV-0级,但CG-ATH和红磷母粒的加入使复合材料的冲击强度大幅度降低;SBS用量为15%时,可以使复合材料的冲击强度提高1倍左右,并且不影响复合材料的阻燃性能。  相似文献   

13.
采用硫酸钙晶须为增强改性剂、苯乙烯-丁二烯-苯乙烯共聚物(SBS)为增韧改性剂、高抗冲聚苯乙烯(HIPS)为基体材料,通过采用熔融混合挤出,制得HIPS复合材料.对该复合材料的力学性能、热性能进行测试,研究了硫酸钙晶须用量对HIPS复合材料的力学性能、热性能的影响,观察了硫酸钙晶须/HIPS微观结构.结果表明,硫酸钙晶须对HIPS具有良好的增强作用.  相似文献   

14.
利用热重法研究了聚丙烯/纳米碳酸钙(PP/nano-CaCO_3)复合材料的热降解,并采用Kissinger、Friedman和CoastRedfern等3种方法计算了该体系的热降解动力学参数。结果表明:与纯PP相比,复合材料的初始降解温度(T_0)、最大失重速率温度(T_m)以及终止失重温度(T_p)都有所提高,其中T_0提高最多,说明nano-CaCO_3可以有效减缓PP热降解的初始阶段;三种计算方法均适用于该体系,数据表明随着nano-CaCO_3含量的增加,活化能E均呈现先增大后减小的趋势,含量为7%时,E增加最多,三种方法分别为44.45 k J/mol、42.18 k J/mol和40.74 k J/mol,可见nano-CaCO_3能显著改善PP的热稳定性。  相似文献   

15.
研究了聚甲基倍半硅氧烷(PMSQ)对高抗冲聚苯乙烯(HIPS)阻燃性能、流动性能以及力学性能的影响。结果表明:随着PMSQ用量的增加,PMSQ/HIPS复合材料极限氧指数逐渐增加;拉伸强度和冲击强度逐渐减小;弯曲强度和断裂伸长率呈现先增后减的趋势;PMSQ用量为25质量份时,复合材料的流动性能最好。  相似文献   

16.
采用熔融共混法制备出了高抗冲聚苯乙烯(HIPS)/高抗冲聚苯乙烯接枝马来酸酐(MHIPS)/CG-ATH纳米复合材料,研究了MHIPS的加入量对复合材料阻燃性能和力学性能的影响,利用透射电镜(TEM)和扫描电镜(SEM)分析了纳米CG-ATH在HIPS基体中的分散性及其与HIPS基体间的界面粘接性.结果表明MHIPS的加入可以显著改善复合材料的阻燃性能和力学性能,并且有助于强化纳米CG-ATH在HIPS基体中的分散性及其与HIPS基体间的界面粘接性.  相似文献   

17.
采用苯乙烯-马来酸酐共聚物(SMA)作为丙烯腈-丁二烯-苯乙烯共聚物/高抗冲聚苯乙烯(ABS/HIPS)的相容剂,研究了SMA对ABS/HIPS共混体系力学性能的影响,并用扫描电子显微镜对共混物的亚微观形态结构进行了分析。结果表明,SMA的加入起到了很好的增容作用。随着HIPS/SMA用量的增加,共混物的冲击性能先增大后减小,当HIPS/SMA=8.5/1.5(质量比),且HIPS/SMA质量分数为10%时,共混物的缺口冲击强度达到97.1J/m,同时拉伸强度和弯曲强度最大。  相似文献   

18.
利用热重法研究了聚丙烯/纳米碳酸钙(PP/nano-Ca CO3)和聚丙烯/多壁碳纳米管(PP/MWNTs)复合材料的热稳定性,采用Kissinger、Flynn-Wall-Ozawa和Friedman 3种方法对2种复合材料的热降解动力学进行了分析比较。结果表明:添加纳米粒子后,2种复合材料的初始失重温度(T0)和最大热失重速率温度(Tm)比纯PP的都有明显提高,数据显示,MWNTs明显延缓了PP热分解的起始阶段,而nano-Ca CO3对推迟Tm更有效。3种计算方法结果显示:无论是微分法还是积分法,都可以准确计算复合材料的热降解动力学参数;随着纳米粒子含量的增加,2种复合材料的活化能(E)都呈现先增大后减小的趋势,在nano-Ca CO3含量为6%、MWNTs含量为1.5%时,E值都达到最大,数据表明,PP基体中掺杂nano-Ca CO3和MWNTs都可以提高其耐热性,从SEM照片中可以看出,MWNTs在PP中的分散性比nano-Ca CO3在PP中的分散性好,对PP热稳定性的提高效果更显著。  相似文献   

19.
采用乙烯基硅烷在氢氧化镁(MH)晶须表面引入乙烯基后与苯乙烯进行原位聚合,得到了聚苯乙烯改性的氢氧化镁晶须(MMH).将MMH与高抗冲聚苯乙烯(HIPS)熔融复合制备了HIPS/MMH复合材料,研究了复合材料的微观结构和力学性能.结果表明,聚苯乙烯包覆在MH表面,并形成了共价键结合;原位聚合改性改善了MH在HIPS基体中的分散性,增强了MH和HIPS的界面相互作用,显著提高了HIPS/MMH复合材料的拉伸强度与冲击韧性.  相似文献   

20.
以环氧树脂(EP)为基体、石墨烯(GNP)和多壁碳纳米管(MWCNT)为增强材料制备了EP/GNP/MWCNT纳米复合材料,通过拉伸试验考察了GNP与MWCNT的混合比例对复合材料力学性能的影响。结果表明:当GNP与MWCNT的总添加量为0.3%、混合比例为50:50时,EP/GNP/MWCNT纳米复合材料的综合力学性能达到最佳,此时复合材料的弹性模量、拉伸屈服强度、拉伸断裂强度、破坏应变等均达到或接近最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号