首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
试验研究了不同大孔树脂对水溶液中阿魏酸的静态吸附-解吸行为,并探讨了吸附流速、上样液中阿魏酸质量浓度和pH对阿魏酸吸附的影响及乙醇体积分数、洗脱流速对阿魏酸解吸附的影响。结果表明:HPD100型大孔树脂对阿魏酸的分离纯化效果最好,其最佳工艺条件为:阿魏酸最大上样量18.33 mg/g树脂,上样液质量浓度330mg/L,pH 5.0,吸附流速1.5 mL/min;洗脱乙醇体积分数50%,洗脱流速0.5 mL/min。  相似文献   

2.
《食品与发酵工业》2014,(4):227-232
对油橄榄叶中的羟基酪醇进行提取及分离纯化。采用酶法对油橄榄叶中的羟基酪醇进行提取,大孔吸附树脂分离纯化。通过单因素实验和正交实验得到酶法提取羟基酪醇的最佳工艺为:酶解时间80 min,pH值为7,温度40℃,酶浓度为30μg/mL,在此条件下得到的羟基酪醇含量为3.72 mg/g。静态吸附实验筛选出DA-201大孔吸附树脂为分离纯化羟基酪醇的最佳树脂,动态吸附-脱附实验得到羟基酪醇分离纯化的最佳工艺为:上样液质量浓度为60μg/mL,上样流速为3 BV/h,脱附剂为体积分数80%的乙醇,脱附流速为3 BV/h,脱附剂用量为2 BV。按照以上最佳实验条件操作,1 g油橄榄叶可得到羟基酪醇总油状物为3.85 mg,纯度为87.01%。  相似文献   

3.
以松毛菇为原料,研究液料比、提取时间、提取温度、超声功率、乙醇浓度、提取次数对松毛菇多酚提取效果的影响,在此基础上利用响应面法优化超声波辅助提取松毛菇多酚的工艺条件,并以吸附及解吸效果为评价指标,筛选出最适大孔树脂,确定其纯化松毛菇多酚的最佳工艺。结果表明,松毛菇多酚最佳提取工艺为液料比22∶1(mL/g)、提取温度67℃、乙醇浓度71%,在此条件下松毛菇多酚提取量为14.60 mg/g。优选D101树脂为松毛菇多酚纯化的最适大孔树脂,其对松毛菇多酚的最佳纯化工艺为上样液p H 3,洗脱剂乙醇浓度50%,上样流速0.5 mL/min,上样浓度0.8 mg/mL,洗脱流速1 mL/min,洗脱剂用量4 BV,纯化后多酚含量为(71.18±0.9)mg/g,比粗提多酚提高了近3.9倍,表明纯化效果良好。  相似文献   

4.
《粮食与油脂》2015,(11):41-45
采用响应面法优化超声波辅助木聚糖酶联合提取玉米皮中阿魏酸工艺,建立阿魏酸得率与超声温度、超声时间、酶添加量、酶解时间四因素的数学模型,确定玉米皮阿魏酸的最适提取工艺参数;以清除自由基能力评价玉米皮阿魏酸的抗氧化活性。结果表明:玉米皮阿魏酸提取的最佳工艺条件为超声温度33℃、超声时间80 min、酶添加量0.83%、酶解时间65 min、酶解温度50℃,阿魏酸得率为3.47 mg/g。在此优化条件下,玉米皮阿魏酸对DPPH自由基、羟自由基及超氧阴离子自由基均具有较强清除作用,半数抑制浓度分别为0.552、0.282和0.111 mg/m L。  相似文献   

5.
通过考察多种大孔树脂的解吸和吸附动力学,筛选出最佳的纯化姜黄素的大孔树脂,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响和洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交实验优化大孔树脂纯化姜黄素的工艺。实验结果表明:DA201大孔树脂对姜黄素吸附能力较大,并且解吸性能好,确定纯化姜黄素的最佳工艺条件:上样浓度为382mg/L,上样流速为1mL/min,上样液体积为75mL,此时姜黄素吸附率为70.64%;洗脱剂浓度为90%的乙醇,洗脱流速为3mL/min,洗脱剂用量为70mL,此时姜黄素解吸率为71.06%。经纯化后,姜黄素的纯度可以达到80.25%。  相似文献   

6.
筛选纯化菊苣总苷的最佳树脂,并研究大孔树脂对总苷的纯化工艺。通过静态吸附及解吸试验、筛选出纯化菊苣总苷的大孔树脂类型,确定HPD300大孔树脂为最佳纯化树脂,进一步研究吸附等温线和吸附动力学模型,并通过动态吸附和解吸的单因素试验确定最佳纯化工艺条件。结果表明, HPD300大孔树脂对菊苣总苷的吸附和解吸性能良好,其吸附等温线方程符合Langmuir模型,吸附量随着温度的升高而减小,吸附过程符合准一级动力学方程。HPD 300大孔吸附树脂最佳纯化工艺条件为:上样液质量浓度3.0 mg/mL,吸附流速2.0 mL/min,最大上样量26m L/g树脂,洗脱流速2.0 mL/min,洗脱剂采用50%的乙醇溶液30 mL,在此条件下菊苣总苷纯化的平均收率为75.79%,纯度为74.17%。  相似文献   

7.
大孔吸附树脂分离纯化洋葱皮黄酮的研究   总被引:1,自引:0,他引:1  
徐怀德  陈佳  包蓉  刘坤  李晋 《食品科学》2011,32(12):133
以黄酮含量为指标,比较6种大孔吸附树脂对洋葱皮黄酮的吸附和解吸效果。通过静态吸附与解吸实验,筛选出效果较好的X-5树脂进行动态实验研究。结果表明:X-5树脂纯化洋葱皮黄酮的工艺条件为吸附流速2mL/min、上样溶液pH5.0、上样液质量浓度0.5mg/mL、50mL 80%乙醇作为洗脱液,洗脱流速lmL/min。经X-5树脂纯化后,洋葱皮黄酮纯度从7.95%提高到80.78%。三次重结晶后其纯度可达94.5%。该方法简单可行,纯化效果好,适合于工业化生产。  相似文献   

8.
响应面法优化从玉米皮提取阿魏酸工艺   总被引:1,自引:0,他引:1  
采用碱解法从玉米皮中提取阿魏酸,先用Plackett-Burman法对碱用量、提取时间、提取温度以及碱醇体积比等因素进行评价,然后用中心组合实验和响应面法对提取工艺进行优化,采用高效液相色谱法检测阿魏酸含量.最佳提取条件为:NaOH溶液质量分数为1.034%,提取温度为98.4℃,碱醇体积比为2.556,在此条件下阿魏酸提取量为1.798 mg/g玉米皮.经实验验证后,阿魏酸提取量从1.522 mg/g提高到1.717 mg/g.  相似文献   

9.
张玉  李进  吕海英  张侠  张花丽 《食品科学》2015,36(12):22-28
为纯化准噶尔山楂残渣中的粗多糖,通过动态吸附和洗脱实验从7 种大孔吸附树脂中选出两种最优树脂NKA-9和D101,按一定比例进行混合实验。在单因素试验基础上,利用响应面法确定最佳纯化条件:NKA-9与D101树脂最佳混合质量比为2∶3;最佳吸附工艺条件为上样液流速3.75 mL/min、上样液质量浓度1.32 g/L、树脂径高比1∶13,此条件下多糖的吸附率为60.75%;最佳洗脱工艺条件为洗脱液浓度0.27 mol/L、洗脱液流速3.5 mL/min、洗脱液用量7 BV,此条件下多糖的洗脱率为84.22%。样品中多糖含量由原来的5.06%上升至21.13%。  相似文献   

10.
考察大孔吸附树脂对菠萝皮中多酚的纯化效果。比较5种树脂的吸附和解吸能力,从中筛选出适合分离菠萝皮总多酚的树脂,并对其吸附和解吸条件进行优化。结果表明,D101为纯化菠萝皮总多酚的最佳树脂,最佳纯化条件:上样流速为1.5mL/min,上柱样液为3.9mg/mL,解吸剂为80%乙醇,洗脱流速为1.0mL/min洗脱时,经D101精制的菠萝皮总多酚的纯度为39.03%。  相似文献   

11.
为优化大孔树脂纯化黄芪毛蕊异黄酮提取物的最佳工艺条件,比较七种不同类型大孔树脂(H103、D101、AB-8、DM130、HPD-400、DM301、HPD-600)的静态吸附-洗脱性能,筛选合适树脂型号后,采用单因素与响应面试验确定最佳纯化工艺条件。结果表明,HPD-400树脂对毛蕊异黄酮的吸附纯化效果最佳。随着温度的升高,树脂吸附量下降,吸附过程符合二级动力学模型特征。大孔树脂纯化黄芪毛蕊异黄酮的最佳工艺为:质量浓度为2.97 mg/mL,pH4.9的毛蕊异黄酮提取液60 mL以1 mL/min流速上样至HPD-400树脂后,经140 mL体积分数为79.8%乙醇溶液,以1 mL/min流速洗脱,产物中毛蕊异黄酮含量由2.17%提高至10.36%,约为纯化前4.8倍。因此,该工艺条件适于黄芪毛蕊异黄酮纯化。  相似文献   

12.
研究大孔树脂纯化西番莲果皮黄酮的最佳工艺条件,并比较不同产物的抗氧化与抗运动疲劳活性.结果表明,AB-8大孔树脂吸附西番莲果皮黄酮的过程符合准二级动力学模型特征,最佳纯化条件为:上样浓度6.0mg/mL、上样液pH5.0、上样流速1.0mL/min、上样液体积60mL、乙醇体积分数71%、洗脱流速1.0mL/min、洗...  相似文献   

13.
野菊花总黄酮的提取与纯化   总被引:5,自引:0,他引:5  
以野菊花总黄酮含量及回收率等为考察指标,研究野菊花总黄酮提取工艺及大孔吸附树脂分离纯化野菊花总黄酮工艺.结果表明:采取乙醇浸提L9(34)正交试验方法,野菊花总黄酮最佳提取工艺条件为乙醇浓度60%、提取温度80℃、提取时间3 h、提取次数3次.AB-8型大孔吸附树脂对野菊花总黄酮静态饱和吸附量为114.65 mg/g(干树脂),洗脱率94.9%,动态饱和吸附量为94.5 mg/g(干树脂1,总黄酮回收率在92.6%、纯度在90%以上,是实验树脂中分离纯化野菊花总黄酮的最佳大孔吸附树脂.分离纯化野菊花总黄酮最佳工艺条件为AB-8型大孔吸附树脂,洗脱剂为70%乙醇,洗脱剂用量为3倍树脂体积,流速3~4 mL/min,上柱总黄酮量与树脂比为1:10.5,上柱液总黄酮浓度为19.8 mg/mL,流速2~3 mL/min,上柱液pH值4~5,冲洗杂质用水体积2~3 BV.  相似文献   

14.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

15.
目的:采用BBD-响应面法优化黑果枸杞色素的渗漉法提取工艺,并对其纯化工艺进行研究。方法:采用单因素实验结合BBD-响应面法,对影响渗漉法提取的3个主要因素乙醇浓度、渗漉速度、溶剂倍数进行了优化。通过筛选出吸附性能最好的大孔树脂,对影响其吸附与解析的因素:上样液浓度、上样液pH值、径高比、上样流速、水洗用量、洗脱剂浓度、洗脱剂pH值、洗脱剂流速进行考察,并对色素色价和产率进行测定。结果:最佳工艺是采用pH3.0,20倍量79%乙醇,以1 mL/min的流速进行渗漉提取。采用X-5大孔树脂纯化色素,径高比1:15、色素液浓度0.02 g/mL,上样液pH3.0、上样量90 mL,流速3 mL/min为最佳吸附条件;以5 BV的95%乙醇在pH2.0、流速3 mL/min的条件下洗脱效果最佳,纯化色素产率可达7.33%,色价为21.7,重复性较好,适合于工业化生产。结论:该工艺操作简单、重复性好,节约成本,可为色素大工业生产提供参考。  相似文献   

16.
以柴达木新鲜枸杞压榨取汁后得到的枸杞果渣为原料,应用超声波协同酶法提取、大孔吸附树脂纯化和正交试验设计,以枸杞黄酮得率和枸杞多糖得率为指标,得出枸杞果渣中枸杞黄酮和枸杞多糖的最佳制备工艺。结果表明:超声协同酶法提取枸杞黄酮的最佳条件为加酶量4mg/g、乙醇浓度75%、超声温度50℃、超声功率250 W、超声时间55 min;超声波提取枸杞多糖的最佳条件为超声温度60℃、超声时间40 min、料液比1:18、超声波功率200 W;在枸杞黄酮纯化试验中,选择大孔树脂HP-20为最佳,其中最佳吸附条件为上样量25 m L、上样p H值4.0、上样流速2.0 m L/min,最佳解吸条件为洗脱液浓度89%、洗脱液流速2.0 m L/min;纯化后总黄酮含量为64.24%、得率为0.605%,枸杞多糖含量为31.60%、得率为5.08%。  相似文献   

17.
研究新疆哈密大枣中环磷酸腺苷(cyclic adenosine monophosphate,cAMP)的分离纯化工艺。以吸附解吸率为衡量指标,通过对比4种大孔树脂的静态吸附与解吸,确定纯化哈密大枣提取液中cAMP的最佳树脂;通过大孔树脂动态吸附与洗脱,考察上样浓度、p H值、流速等因素,确定cAMP分离纯化的最佳工艺。结果表明:HZ-802型树脂纯化效果较好,动态吸附的最佳条件为:上样体积220 mL,上样液流速2.0 m L/min,上样液浓度20μg/mL,上样液pH 5;动态解析的最佳条件:洗脱液40%乙醇,洗脱液体积120 mL,洗脱液流速为3 mL/min;经纯化后得到环磷酸腺苷浓度为38.24μg/mL,冷冻干燥后粗提物中cAMP含量为0.10%。  相似文献   

18.
大孔树脂分离纯化米团花黄色素的研究   总被引:2,自引:0,他引:2  
为寻找分离纯化米团花黄色素最佳工艺条件,对11种大孔树脂对米团花黄色素的静态吸附、解吸性能进行了比较研究,并确定了最佳吸附树脂D101对米团花黄色素动态吸附、解吸的最佳条件。结果表明:D101型大孔树脂分离纯化米团花黄色素的最佳工艺条件为:上样液浓度0.10~0.13 mg/mL,上样液pH 5,流速为1.5 mL/min;以60%(V/V)的乙醇洗脱,流速为3 mL/min。D101型大孔树脂的饱和吸附量为8.820 mg/g树脂,重复利用10次吸附量仍然很好。采用该工艺分离纯化得到的产品中米团花黄色素的含量为(1.9±0.0055)%,色价为27.93±0.80。  相似文献   

19.
采用正交设计实验筛选AB-8大孔树脂纯化苋菜红色素的最佳工艺条件。其最佳工艺为:上样pH值为3、吸附流速1.2 mL/min、洗脱剂浓度为15%乙醇溶液、洗脱流速0.9 mL/min。经过AB-8大孔树脂提纯后,提高了苋菜红色素的品质。  相似文献   

20.
利用大孔树脂对粘性红圆酵母RM-1产β-胡萝卜素进行分离纯化,得到最佳的吸附和解吸条件。结果表明,最佳吸附树脂为X-5树脂,最佳洗脱剂为乙醚,最佳分离纯化工艺参数为上样质量浓度111.82μg/mL、吸附流速1mL/min、洗脱流速0.5mL/min。经纯化,β-胡萝卜素纯度达到33.29%,与未纯化相比,提高了6.87倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号