首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
方面级情感分析旨在检测给定方面句子的情感极性.现有研究大多在句法依存树上构造图卷积网络,以获取方面词与上下文之间的句法信息.然而这类方法存在提取信息不够丰富、缺乏对句子中情感信息的挖掘等问题.针对上述问题,提出基于情感增强与双图卷积网络的方面级情感分析模型.该模型由双通道图卷积网络组成,旨在挖掘句子中的情感信息、句法信息和语义信息.利用位置信息和情感知识在依存树上构造情感增强依存图,并以此构建情感增强图卷积网络,增强方面词与上下文之间的情感依赖关系,同时挖掘句子中丰富的句法信息特征.构建基于多头注意力机制的图卷积网络,获取句子中的语义特征信息.对双图卷积网络的输出特征进行掩码、平均池化和拼接等操作,并通过情感分类层进行分类.实验结果表明,该模型与经典的图卷积网络模型(ASGCN)相比,在Restaurant、Laptop和Twitter数据集上的准确率和F1值分别提升3.43和5.69、3.13和3.92、3.57和4.02个百分点,具有较好的情感分类性能.  相似文献   

2.
当前大多数基于图卷积网络的方面级情感分析方法利用文本的句法知识、语义知识、情感知识构建文本依赖,但少有研究利用文本语序知识构建文本依赖,导致图卷积网络不能有效地利用文本语序知识引导方面项学习上下文情感信息,从而限制了其性能。针对上述问题,提出基于语序知识的双通道图卷积网络(dual-channel graph convolutional network with word-order knowledge, WKDGCN)模型,该模型由语序图卷积网络(word-order graph convolutional network, WoGCN)和情感知识结合语义知识增强的句法图卷积网络(sentiment and attention-enhanced graph convolutional network, SAGCN)组成。具体地,WoGCN基于文本的语序知识构建图卷积网络,由文本的语序依赖引导方面项特征学习上下文情感信息;SAGCN利用SenticNet中的情感知识结合注意力机制增强句法依赖,利用增强后的句法依赖构建图卷积网络,以此引导方面项特征学习上下文情感信息;最后融合两个图卷积网...  相似文献   

3.
方面级情感分析是一项细粒度的情感分类任务。近年来,依存树上的图神经网络被用于建模方面项及其意见项间的依赖关系。然而,这类方法通常具有高度依赖依存树解析质量的缺点。同时,大多数现有研究着重关注语法信息,忽视了情感知识在建模特定方面与上下文之间情感依赖关系中的作用。为解决以上问题,设计并提出了用于方面级情感分析的情感增强双图卷积网络。模型基于依存树与注意力机制建立双通道结构,在更为准确、高效地捕捉方面与上下文间语法与语义关联的同时减轻了模型对依存树的依赖程度。此外,模型引入情感知识用于增强图结构,帮助模型更好地提取特定方面的情感依赖关系。模型在3个公开基准数据集Rest14、Lap14、Twitter上的准确率分别达到了84.32%、78.20%、76.12%,接近或超越目前最先进的性能。实验表明,提出的方法能够合理利用语义和语法信息,在使用更少参数的情况下实现较为先进的情感分类性能。  相似文献   

4.
方面级情感分析是细粒度情感分析的一个基本子任务,旨在预测文本中给定方面或实体的情感极性。语义信息、句法信息及其交互信息对于方面级情感分析是极其重要的。该文提出一种基于图卷积和注意力的网络模型(CA-GCN)。该模型主要分为两部分,一是将卷积神经网络结合双向LSTM获取的丰富特征表示与图卷积神经网络掩码得到的方面特征表示进行融合;二是采用两个多头交互注意力融合方面、上下文和经图卷积神经网络得到的特征信息,而后接入多头自注意力来学习信息交互后句子内部的词依赖关系。与ASGCN模型相比,该模型在三个基准数据集(Twitter、Lap14和Rest14)上准确率分别提升1.06%、1.62%和0.95%,F1值分别提升1.07%、2.60%和1.98%。  相似文献   

5.
方面级情感分析是情感分析的子任务,旨在判断评论目标的具体方面所对应的情感极性.近年来,深度神经网络模型在方面级情感分析问题上取得了较大进展.然而,现有的方面级情感分析模型仍存在方面信息丢失、没有充分利用句法依存关系等问题.本文提出了一种基于关系注意力机制的图卷积网络RAGCN(Relational Attention based Graph Convolutional Network).首先,RAGCN通过两个双向长短期记忆网络分别对句子和增强后的方面建模,以引导图卷积网络对向量表示进行更新.其次,为了区分上下文单词对给定方面情感的贡献,提出了一种关系注意力机制.该机制能充分利用评论节点间的边类型,结合双向长短期记忆网络的输出以捕获方面和上下文单词之间的关系.此外,为进一步提高模型的鲁棒性,RAGCN采用门控融合机制来过滤关系注意力层和图卷积网络层的输出,从而获取多更准确的句子表征向量.多个方面级情感分析数据集上的实验结果表明,RAGCN模型在准确度,Macro-F1方面均优于对比模型.  相似文献   

6.
近年来,深度神经网络特别是图神经网络在方面级情感分析任务上取得了较大进展,但是仍存在未充分利用外部知识信息、句法依赖树的边关系信息以及知识图谱结构信息的缺陷.针对上述问题,本文提出了一种知识增强的双图卷积网络BGCN-KE(Knowledge-enhanced Bi-Graph Convolutional Network).首先,提出一种融合句法依赖关系与外部知识的子图构造算法,得到节点间语义关系更紧密的知识子图.其次,提出了双图卷积网络,分别利用两个图卷积网络在句法依赖知识子图中引导评论文本的节点学习邻接节点的外部知识,以及在评论文本的句法依赖图中融合特定方面相关的语义信息,从而增强评论文本的特定方面知识表示和语义表示.再次,BGCN-KE引入边关系注意力机制,更好地捕获特定方面和上下文词语间的语义关系.最后,提出了一种多级特征融合机制,充分融合特定方面相关的外部知识、语义信息和边关系特征.多个公共数据集上的实验证明,BGCN-KE的性能优于最新的对比模型.  相似文献   

7.
方面级情感分析作为情感计算领域的重要任务;旨在识别文本中关于特定方面的情感倾向。为了提高在这一任务中的性能;提出了一种增强句法信息与多特征图卷积融合的网络模型(ESMFGCN);利用依赖树表示句子中单词之间的语法结构关系;由于单纯地使用依赖树方法在建模时会引发不相关的噪声问题;引入了短语结构树;并将短语树转化为层级短语矩阵;并将由依赖树构造的邻接矩阵和层级短语矩阵合并作为图卷积网络的初始矩阵;用于增强句法信息。为了更精细地捕捉方面词与整个句子之间的关联;引入了注意力机制;对方面词上下文和整个句子建立更为精细的关联;并通过图卷积网络提取语义信息。设计融合层用于融合语义信息与句法信息;从而提高方面级情感分析的准确性和鲁棒性。在Restaurant、Laptop、Twitter数据集上分别设计对比实验、消融实验和敏感性分析实验;实验结果表明;相较于其他研究方法;该方法取得了显著的性能提升;证明了模型的有效性和优越性。  相似文献   

8.
现有方面级情感分析方法,存在无法获取最优文本表示和使用普通图卷积网络不能提取依存图中深层结构信息的问题。为此,提出了一种基于深度BiLSTM(DBiLSTM)和紧密连接的图卷积网络(DDGCN)模型。首先,通过DBiLSTM获取方面词与上下文单词间的深层语义信息;其次,在原始图卷积网络中加入紧密连接,以生成能提取深层结构信息的紧密图卷积网络;然后,利用改进后的图卷积网络捕获依存图上的结构信息;最终,将融合2种深层信息的文本表示用于情感分类。3个数据集上的实验结果表明,DDGCN模型相比对比模型在准确度和F1上均有提升。  相似文献   

9.
基于方面的情感分析是一项细粒度的情感分析任务,旨在将方面与相应的情感词对齐,以进行特定于方面的情感极性推理。近年来,借助句法依赖信息的图神经网络情感分类方法成为该领域的一个研究热点,但是由于评论语句在内容表达和句法结构上的灵活性,仅利用句法依赖信息的建模方法仍然存在一定的不足。为了发挥情感知识与结构语义信息对评论语句的增强作用,提出一种双通道知识增强图卷积网络模型DualSyn-GCN。一方面根据方面与方面、方面与上下文之间的隐含关系进行句法依赖邻接矩阵的增强,另一方面从外部情感知识对方面的情感依赖进行学习,随后对2种不同增强表示进行融合,从而实现不同表示间的共享与互补。实验结果表明,相较于经典的基于特定方面的图卷积网络模型(ASGCN),该模型在LAP14数据集上的准确率和MF1值分别提升了2.34%和3.26%。  相似文献   

10.
目前,基于卷积神经网络和循环神经网络的方面级情感分析研究工作较少同时考虑到句子的句法结构和词语的语法距离,且卷积神经网络和循环神经网络无法有效地处理图结构的数据.针对上述问题,提出了一种基于距离与图卷积网络的方面级情感分类模型.首先,为该模型设计了一个具有残差连接的双层双向长短期记忆网络,用于提取句子的上下文信息;然后,根据句法依赖树得到词语的语法距离权重,并根据词语之间的句法关系构建邻接矩阵;最后,采用图卷积网络结合句子的上下文信息、语法距离权重和邻接矩阵提取方面的情感特征.实验结果表明,模型是有效的且可获得更好的性能.  相似文献   

11.
方面级情感分析(aspect based sentiment analysis,ABSA)是自然语言处理领域的一个重要任务,其目标是对句子中给定的方面词进行情感极性的判断.目前,最先进的ABSA模型采用图神经网络处理句子的语义信息和句法结构.然而,这些方法对句法依赖树蕴含的信息使用不足,不仅缺少对外部知识的挖掘,而且忽略了对模型引入上下文噪声的消除.针对这些问题,提出了一种知识增强的双通道多头图卷积神经网络.该模型建立了基于语义的多头图卷积网络和基于句法的多头图卷积网络,利用外部情感知识以及句法依赖距离重构句法依赖树,使模型充分融入外部知识.同时采用自注意力机制构建动态语义图并过滤引入噪声,从而更多地关注方面词.模型在3个公开基准数据集Rest14、Lap14、Twitter上的准确率分别达到了87.57%、82.34%、77.75%,显著优于基线模型.  相似文献   

12.
在方面级情感分类中,常用的方法是用卷积神经网络或循环神经网络提取特征,利用注意力权重获取序列中不同词汇的重要程度.但此类方法未能很好地利用文本的句法信息,导致模型不能准确地在评价词与方面词之间建立联系.该文提出一种图卷积神经记忆网络模型(MemGCN)来解决此依赖问题.首先通过记忆网络存储文本表示与辅助信息,然后利用基...  相似文献   

13.
目的 方面级多模态情感分析日益受到关注,其目的是预测多模态数据中所提及的特定方面的情感极性。然而目前的相关方法大都对方面词在上下文建模、模态间细粒度对齐的指向性作用考虑不够,限制了方面级多模态情感分析的性能。为了解决上述问题,提出一个方面级多模态协同注意图卷积情感分析模型(aspect-level multimodal co-attention graph convolutional sentiment analysis model,AMCGC)来同时建模方面指向的模态内上下文语义关联和跨模态的细粒度对齐,以提升情感分析性能。方法 AMCGC为了获得方面导向的模态内的局部语义相关性,利用正交约束的自注意力机制生成各个模态的语义图。然后,通过图卷积获得含有方面词的文本语义图表示和融入方面词的视觉语义图表示,并设计两个不同方向的门控局部跨模态交互机制递进地实现文本语义图表示和视觉语义图表示的细粒度跨模态关联互对齐,从而降低模态间的异构鸿沟。最后,设计方面掩码来选用各模态图表示中方面节点特征作为情感表征,并引入跨模态损失降低异质方面特征的差异。结果 在两个多模态数据集上与9种方法进行对比,在Twitter-2015数据集中,相比于性能第2的模型,准确率提高了1.76%;在Twitter-2017数据集中,相比于性能第2的模型,准确率提高了1.19%。在消融实验部分则从正交约束、跨模态损失、交叉协同多模态融合分别进行评估,验证了AMCGC模型各部分的合理性。结论 本文提出的AMCGC模型能更好地捕捉模态内的局部语义相关性和模态之间的细粒度对齐,提升方面级多模态情感分析的准确性。  相似文献   

14.
方面级情感分析是情感分析中的细粒度任务,旨在检测给定句子中方面词的情感极性.随着图卷积网络的兴起,通过依赖树构建的图卷积网络模型被广泛用于该任务,并取得了令人满意的效果.但大多数研究只获取图卷积网络最后一层输出作为分类层的输入,忽略了其他层的节点特征,且深层图卷积网络存在节点平滑问题.近年来,有研究者将图卷积网络的多层节点特征进行集成,提高了情感分类模型的性能.文中结合自适应特征融合与高速公路网络,提出了一种基于多粒度特征融合的高速公路图卷积网络模型,用于方面级情感分析.首先,该模型通过句法依赖结构和双向的上下文信息构建图卷积网络;同时,在图卷积网络引入高速公路网络缓解深层图卷积网络过平滑的问题,加深图卷积网络的深度.然后,使用自适应融合机制从不同深度图卷积网络获得多粒度节点信息.最后,在公共数据集上进行实验,实验结果表明,与基准模型相比,所提模型能更好地捕获更多粒度的句法信息和长距离依存关系.  相似文献   

15.
特定方面情感分析旨在自动识别同一句子中不同方面的情感极性。在现有方法中,结合注意力机制的循环神经网络模型在特定方面情感分析任务中取得了较好的效果,但是大多都忽略了句子的句法特征。因此,该文提出一种结合图卷积神经网络的注意力网络(GCN-aware Attention Networks, GCAN)模型。首先通过长短时记忆网络获取句子的序列信息,并利用图卷积神经网络来捕获语义特征,然后提出两种特征融合方式,得到基于序列信息和语义特征的特定方面表示。在此基础上,引入双向注意力机制处理特定方面包含多个单词的情况,进而获得更精准的基于特定方面的上下文表示。与ASGCN模型相比,该方法在Twitter数据集和SemEval14/15数据集上的分类准确率分别提升了0.34%、0.94%、1.43%和1.23%,F1值分别提升了0.53%、1.55%、1.60%和2.54%,验证了GCAN的有效性。  相似文献   

16.
为解决当前方面级情感分析中提取语义句法信息不充分导致分类结果不准确的问题,提出一种基于图卷积网络的多交互注意模型。基于注意力机制和句法相对距离分别重构带有权重的语义图邻接矩阵和句法图邻接矩阵,以这种方式存储更多信息,结合图卷积网络充分挖掘上下文中更深层次的语义和句法信息;通过掩码机制和交互注意完成方面词与上下文的语义交互和句法交互,捕获相关关联并进行特征融合。在SemEval 2014和Twitter数据集上进行实验,实验结果表明,该模型与基于注意力的模型和基于图卷积网络的模型相比,有更好的分类效果。  相似文献   

17.
基于方面的情感分类任务旨在识别句子中给定方面词的情感倾向性.以往的方法大多基于长短时记忆网络和注意力机制,这种做法在很大程度上仅依赖于建模句子中的方面词与其上下文的语义相关性,但忽略了句中的语法信息.针对这种缺陷,提出了一种交互注意力的图卷积网络,同时建模了句中单词的语义相关性和语法相关性.首先使用双向长短时记忆网络来...  相似文献   

18.
随着电力业务的发展,客服环节时刻产生着大量的数据,然而传统对话数据情感检测方法对于客服质量检测的手段存在着诸多的问题和挑战.本文根据词语出现的排列和定位构建字图,对整个语句进行非连续长距离的语义建模;并针对文档不同组成部分之间的关系,对语句上下文之间的交互依赖或自我依赖关系进行建模;最后通过卷积神经网络对所构建的图进行...  相似文献   

19.
面向特定方面的用户评论细粒度情感分析是当前自然语言处理领域一个热门的研究话题,针对评论语句在内容表达和句法结构上的灵活性,综合运用词性、句法、语义等知识增强评论语句的特征表示是当前一种主要的研究思路.基于此,提出一种多视图融合表示的图卷积网络模型.该模型通过自注意力和特定方面注意力,学习得到评论语句基于上下文的增强表示;分别利用句法依赖信息和词共现信息,通过图卷积操作得到评论语句基于句法和基于语义的两种不同表示;在获得三种不同视图表示的基础上设计了一种分层融合方式,通过对三种表示的不同组合与卷积操作实现不同视图表示间的信息共享与互补.五个公开数据集上的实验结果表明该模型较现有模型取得了更好的性能.  相似文献   

20.
方面级情感分析旨在预测句子中特定方面的情感极性.然而,现阶段的研究依然存在语义信息不充分利用的问题,一方面大多数现有工作侧重于学习上下文词到方面词之间的依存信息,没有充分利用句子的语义信息;另一方面现有研究没有专注于依存树的语法构建,从而没有充分利用语法结构信息去补充语义信息.针对以上问题,提出多信息增强图卷积神经网络(MIE-GCN)模型.主要包括两部分:一是通过方面感知注意力、自注意力和外部常识形成多信息融合层充分利用语义信息;二是根据单词间不同的语法距离构造句子的语法掩码矩阵,通过获得全面语法结构信息来补充语义信息.利用图卷积神经网络增强节点表示.在基准数据集上的实验结果表明,提出的模型均比对比模型有一定的提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号