共查询到20条相似文献,搜索用时 15 毫秒
1.
近些年知识库问答的方法通常利用多视角信息来表示候选答案,忽略了这些信息间的相互影响,将问题的单词与候选答案的多视角信息计算相关性,忽略了二者在整体与细节上的信息。基于上述问题,提出一个多角度交叉注意力模型,通过多视角交叉注意力机制获取候选答案多视角信息间的交叉影响;将问题与候选答案信息进行整体表示,运用双向交叉注意力机制来计算其二者在整体级别上的关联性,最终提高获取答案的正确率。利用FreeBase知识库与WebQuestions数据集进行实验,F1值达到55.84%,优于最近表现较好的方法。 相似文献
3.
近年来,涌现了很多高质量大规模的知识库,基于知识库的问答系统(Knowledge Base Question Answering,KBQA)随着知识库的发展而得到了快速发展.知识库问答系统通过对自然语言问句进行理解和解析,进而利用知识库中的事实来回答自然语言问题,使用户在不了解知识库数据结构的情况下快速、精准的得到有价... 相似文献
4.
为解决现有知识库问答编码-比较框架的原始信息丢失问题,提出基于实体消岐和多粒度注意力的知识库问答方法.从多个粒度对问题和知识库关系的相关性进行建模,引入双向注意力机制更有效地聚合向量保留原始信息,实现关系检测中字符之间的细粒度对齐.为提高实体链接的准确率,融合双向长短时记忆网络-条件随机场(BiLSTM-CRF)克服对... 相似文献
5.
6.
视觉问答是一个具有挑战性的问题,需要结合计算机视觉和自然语言处理的概念。大多数现有的方法使用双流方式,先分别计算图像和问题特征,然后再采取不同的技术和策略进行融合。目前,尚缺乏能够直接捕获问题语义和图像空间关系的更高层次的表示方法。提出一种基于图结构的级联注意力学习模型,该模型结合了图学习模块(学习输入图像问题的特定图表示)、图卷积层和级联注意力层,目的是捕捉不同候选框区域图像的空间信息,以及其与问题之间的更高层次的关系。在大规模数据集VQA v2.0上进行了实验,结果表明,跟主流算法相比较,是/否、计数和其他类型问题的回答准确率均有明显提升,总体准确率达到了68.34%,从而验证了提出模型的有效性。 相似文献
7.
近年来,随着教育信息化的不断深入,海量教育资源和教学数据不断累积,一些教育知识库被提出,这为数据驱动的智慧教育提供了良好的发展条件.基于教育知识库的问答方法能够为学习者提供即时的答疑辅导,进而有效提升学习者的学习兴趣和效率.然而,目前特定于教育领域的知识库问答研究较少,且开放领域的知识库问答方法大多独立地建模问句和候选答案实体,因而建模效果有限.基于此,提出一种基于问句感知图卷积网络的教育知识库问答方法.首先,针对特定问句,提取其中的问句描述信息和查询实体集,并分别通过Transformer和预训练的知识库嵌入进行处理得到两者的表示;其次,根据查询实体集从知识库中抽取候选答案集的子图,并通过双注意力的图卷积神经网络更新节点信息,其中注意力的得分分别利用问句描述信息和查询实体集的表示,进而实现问句感知;最后,融合问句描述信息、查询实体集和候选实体表示来计算得分,并预测答案.在真实数据集MOOC Q&A上进行实验,采用预测准确率和平均倒数排名的指标进行评估,实验结果表明提出的方法优于基准模型. 相似文献
8.
为了获取到更加细粒度的图像表示,防止图像特征获取时关键信息的丢失,论文采用融合多头自注意机制的图像特征提取模型,来获取图像特征。通过对问题文本信息使用自注意力机制并用来引导图像注意,增强问题文本特征与图像特征之间的关联性,获取图像特征中与问题文本相关的信息。将最终获取到的图像特征与问题特征进行多模态特征融合,并对融合特征进行分类预测。实验结果表明,论文方法在VQA1.0数据集上,总体准确率为64.6%,在VQA2.0数据集上,总体准确率为63.9%,从而验证了论文方法的有效性,相比一些经典的方法都有较好的提升。 相似文献
9.
基于知识库的问答(Question Answeringover Knowledge Base, KBQA)是问答系统的重要组成部分,要求计算机正确理解自然语言问题的语义,并从知识库中提取问题的答案.早期研究主要关注仅涉及到单个关系三元组的简单问答,近年来,随着以深度学习为代表的表示学习技术在简单问答任务的成功应用,研究重点逐渐转移到需要复杂推理能力的推理问答上.本文将对现有知识库问答的研究进展进行综述,先总结简单问答和推理问答两类任务各自的问题和挑战,然后对近年来与知识库问答相关的数据集进行多维度的分析和比较,接下来对两类任务的代表性方法进行系统性归纳介绍并分析各类方法的优缺点,最后对未来的研究方向进行展望. 相似文献
10.
路径选择是知识库问答任务的关键步骤,语义相似度常被用来计算路径对于问句的相似度得分。针对测试集中存在大量未见的关系,该文提出使用一种负例动态采样的语义相似度模型的训练方法,去丰富训练集中关系的多样性,模型性能得到显著提升。针对复杂问题候选路径数量组合爆炸问题,该文比较了两种路径剪枝方法,即基于分类的方法和基于集束搜索的方法。在包含简单问题和复杂问题的CCKS 2019-CKBQA评测数据集上,该方法能达到较优异的性能,测试集上单模型系统平均F1值达到0.694,系统融合后达到0.731。 相似文献
11.
针对现有的注意力编解码视觉问答模型存在两个问题:单一形态图像特征包含视觉信息不完整,以及对问题指导过度依赖,提出结合对比学习的图像指导增强视觉问答模型。所提模型包含一种双特征视觉解码器,它基于Transformer语言编码器实现,将单一的图像特征扩展为区域和网格两种形态,根据不同形态特征的相对位置构建互补的空间关系,以解决第一问题。所提模型包含一种视觉引导的语言解码器,将视觉解码的两种图像特征与问题特征二次匹配,通过平行门控引导注意力,自适应地修正不同视觉信息对问题的引导比例,以解决第二问题。所提模型,在训练过程中,引入对比学习损失函数,通过对比模型推理时不同模态特征在隐空间内的相似度,获取更相近的互信息。所提模型,在VQA 2.0、COCO-QA和GQA数据集上分别取得73.82%、72.49%和57.44%的总体准确率,较MCAN模型分别提高2.92个百分点、4.41个百分点和0.8个百分点。大量消融实验和可视化分析证明了模型的有效性。实验结果表明,所提模型能够获取更相关的语言-视觉信息,并且对不同类型的问题样本具有更强的泛化能力。 相似文献
12.
光学乐谱识别对推动音乐智能化与数字化有着重大意义。传统的乐谱识别流程冗杂,易导致错误积累,但目前基于序列建模的乐谱识别方法不能从全尺度上获取音符上下文信息,在识别效果上仍有提升空间。为此,提出一种基于残差门控循环卷积和注意力机制的端到端光学乐谱识别方法。以残差门控循环卷积作为骨干网络,丰富模型提取上下文信息能力;结合一个注意力机制解码器,能更好地挖掘乐谱特征信息及其内部相关性,增强模型表征能力并对乐谱图像中的音符及音符序列进行识别。实验结果表明,改进后的网络与原卷积循环神经网络(CRNN)模型相比,符号错误率和序列错误率均显著下降。 相似文献
13.
在自然语言问题中,由于知识库中关系表达的多样化,通过表示学习匹配知识库问答的答案仍是一项艰巨任务.为了弥补上述不足,文中提出融合事实文本的知识库问答方法,将知识库中的实体、实体类型和关系转换为事实文本,并使用双向Transformer编码器(BERT)进行表示,利用BERT丰富的语义模式得到问题和答案在低维语义空间中的... 相似文献
14.
刘传 《计算机与数字工程》2023,(4):860-865
经典的视觉注意力模型缺乏视觉对象间空间关系的推理能力,忽略了图像和问题文本之间的密集语义交互,导致在预测答案过程中对噪声的处理能力不足。针对上述问题,提出了一种基于门控图卷积网络和协同注意力的视觉问答模型。该模型基于图像中视觉对象之间的相对空间位置构建空间关系图;同时以问题为引导,在图卷积网络的基础上增加门控机制,能够动态控制具有不同空间关系的邻居对节点的贡献程度;然后将问题的词特征和带有空间关系感知能力的视觉特征输入双向引导的协同注意力模块,共同学习它们之间的密集语义交互。在VQA2.0数据集进行实验,结果表明:该模型具有较强的显式关系推理能力,在test-std测试集的总体准确率为70.90%,优于该数据集上的经典模型,有效地提升了视觉问答的准确率。 相似文献
15.
16.
针对中文文档摘要领域存在的缺少可靠数据集,有监督的摘要模型不成熟的问题,构建了一个规模超过20万篇的中文文档级别的摘要语料库(Chinese Document-level Extractive Summarization Dataset,CDESD),提出了一种有监督的文档级别抽取式摘要模型(Document Summ... 相似文献
17.
18.
知识库问答通常包含3个子任务:中心实体识别、实体链接和关系检测。鉴于当前知识库中通常包含数量巨大的实体和关系,为了进一步解决基于复杂规则和倒排索引在知识库中进行检索带来的搜索空间局限性、召回率偏低和难以兼顾语义信息等问题,提出了一种构造知识库问答检索框架的新方法。该框架包含文本召回和哈希召回两个主要模块,通过二次召回设计构成传统文本检索与保留语义信息的哈希码检索的级联检索模式。所提方法在大规模知识库问答测评基准KgCLUE和NLPCC2016提供的数据集上进行实验,结果表明:基于深度哈希学习的知识库问答检索框架可以高效地获取高质量的候选项,在适应大规模知识库的同时能够节省一定的时间开销。 相似文献
19.
面向知识库问答的实体链接是指将自然语言问句中实体指称链接到知识库中实体的方法。目前主要面临两个问题: 第一是自然语言问句短,实体指称上下文不充分;第二是结构化知识库中实体的文本描述信息少。因此,该文提出了分别利用候选实体的类别、关系和邻近实体作为候选实体表示的方法,弥补知识库实体描述信息不足的问题。同时,通过语料训练得到问句指称的相似实体指称作为其背景知识。最后,结合实体流行度,共同作为实体消歧的特征。实验结果表明,上述提到所有特征的线性组合在数据集上高于单个特征的结果,表现最佳。 相似文献
20.
《信息安全与技术》2021,(Z1):71-74
基于知识库的问答是自然语言处理研究热点之一,在针对知识库问答的方法中,传统的字向量和词向量无法很好地表示问句上下文的语义信息、循环神经网络并行计算能力不足和没有考虑句子中周围词对当前词的影响、卷积神经网络不考虑字在问句中位置信息等问题。为了解决上述问题,论文提出了使用BERT模型结合循环神经网络和卷积神经网络模型的研究方法。在开源SimpleQuestion数据集上使用文中提出的方法,可使问句命名实体识别任务中f1-score提升了3%,问句关系分类任务准确率提升1%,最终答案生成任务准确率提升3.5%。实验表明,使用BERT模型可以增强这些传统模型的效果。 相似文献