共查询到20条相似文献,搜索用时 15 毫秒
1.
随着钢铁工业向高速化、精密化方向发展,通常在钢中加入硫元素以提高钢的可加工性。钢中硫化锰夹杂物的形貌及分布对钢材性能有重要影响,硫化锰夹杂物控制的目标是避免大尺寸硫化锰的产生,得到尽可能细小、均匀分布的纺锤状硫化锰。易切削钢通过添加适当的硫元素并控制硫化锰夹杂物的大小和形态,在保证强度和韧性的基础上,可以获得优良的可加工性。碲的加入可以调节钢中硫化物的尺寸和形貌,在凝固过程中硫化锰夹杂物被改性为碲化锰与硫化锰的复合夹杂物,这类夹杂物通常为球形或近球形,降低了大尺寸枝晶型硫化锰所占比例,改善钢的力学性能和切削性能。当钢中碲硫质量比高于0.2时,钢中硫化物的长径比会显著降低,钢的可加工性和切削性能会得到提高。总结和阐述了碲处理对钢中硫化锰夹杂物的改性机理以及碲对钢材切削性能的影响规律和机理,可为碲在钢铁工业应用中的进一步研究和开发提供参考。 相似文献
2.
分析了改进前120 t LD-LF-RH-240 mm×240 mm CC工艺生产F45MnVS非调质钢中硫化物夹杂形貌、尺寸、数量密度等特性。通过采取以下改进措施:(1)转炉出钢过程脱氧铝锭加入用环绕钢液冲击区域分时段、分批次方式;(2)使用不含有MnS夹杂物的低碳低硫锰铁等合金辅料;(3)LF精炼过程S线喂入分批次加入等。试验结果表明:改进工艺后,LF、RH、中间包、铸坯以及轧材所有钢中硫化物夹杂的尺寸均有所降低,铸坯边缘、铸坯1/4处以及铸坯中心的大尺寸(>5μm)夹杂物数量密度分别由改进前的35、83、51个/mm2下降至改进后的24、57、39个/mm2,降幅分别达到31.43%、31.33%、23.53%。改进后轧材中细系和粗系夹杂物评级均有所改善,夹杂物长宽比为0~3的比例由改进前的63.07%增加至改进后71.23%。 相似文献
3.
4.
5.
通过热力学软件FactSage 7.0和工业实践,对1 873 K下GCr15轴承钢脱氧过程中非金属夹杂物生成热力学进行研究。计算结果表明,当轴承钢中的w(Mg)>0.4×10-6时,钢中夹杂物由Al2O3转变为MgO·Al2O3;当钢中的w(Mg)>10×10-6时,钢中夹杂物主要为MgO。当轴承钢中w(Al)>100×10-6、w(Ca)>0.1×10-6时,钢中开始生成固态CaO·6Al2O3和CaO·2Al2O3夹杂物;当钢中w(Ca)>2×10-6时,钢中生成的夹杂物为液态钙铝酸盐;当钢中w(Ca)>13×10-6时,钢中开始生成固态CaO夹杂物。工业实践检测和热力学计算结果基本吻合,此外,研究发现纯铁液的脱氧热力学与轴承钢差异较大,因此... 相似文献
6.
本试验是在氧气顶吹转炉200t 钢包中采用稀土1号混合粉剂,在16Mn 类、09Mn 类钢上进行的.通过对比试验明显看出:经处理后的钢中夹杂物种类发生显著变化,钢中夹杂含量也明显降低,提高了钢质的洁净度;提高了σ_、σ_b 值,尤其是横向上的和σ_b 值,改善了钢的δ_5、Ψ值;钢中夹杂物的类型、形状分布与稀土加入量、〔O〕/〔S〕比值和钢液二次氧化有关,并且与〔Xt〕〔S〕浓度积、〔Xt〕/〔S〕的比值有明显的对应关系,〔Xt〕〔S〕>1.7×10~(-4),〔Xt〕/〔S〕>1.7时,条状 MnS 消失。因此,在稀土处理工艺和浇铸过程中,必须采取相应的一系列保护措施. 相似文献
7.
8.
文中通过热力学软件FactSage 7.0和工业实践,对1 873 K下SWRCH22A冷镦钢脱氧过程中非金属夹杂物生成热力学进行研究.计算结果表明,当冷镦钢中[Al]含量增加到2×10-6以上时,平衡时钢中对应生成液态夹杂物、MnO·Al2O3和Al2O3,表明冷镦钢出钢过程应先加铝再加锰以降低精炼渣的氧化性.当冷镦钢中的[Mg]含量超过0.5×10-6时,钢中夹杂物由Al2O3转变为MgO·Al2O3;当钢中的[Mg]含量超过约9×10-6时,钢中夹杂物主要为MgO;随着钢中[Al]含量的提高,生成尖晶石夹杂物所需的最小[Mg]含量逐渐增大.当冷镦钢钢液中[Ca]含量超过约1.3×10-6时,钢中生成的夹杂物主要为液态钙铝酸盐;当钢液中的[Ca]超过约13×10-6时,钢中开始生成固态CaO夹杂物.冷镦钢中形成液态钙铝酸盐夹杂物所需的最小[Ca]含量随着钢中[Al]含量的提高逐渐增大.实验检测和热力学计算结果基本吻合,此外,研究发现,纯铁液的脱氧热力学与冷镦钢差异较大,因此,不能采用纯铁液的脱氧热力学指导冷镦钢生产实践. 相似文献
9.
10.
采用原位统计分布分析技术对重轨钢铸坯中MnS夹杂的粒度分布情况进行了分析研究。通过ASPEX扫描电镜-能谱仪(SEM-EDS)将重轨钢中不同尺寸的MnS夹杂进行统计,建立了原位统计分布分析MnS夹杂的粒度分布曲线,分别对重轨钢铸坯中5~10、10~20、20~50μm的MnS夹杂的分布情况进行了统计分析。结果表明,沿着铸坯的内部到边缘的方向上,5~10μm小颗粒夹杂一直存在,10~20、20~50μm大颗粒MnS夹杂所占比例降低,直到铸坯边缘,几乎没有大颗粒MnS夹杂存在。将该结果与ASPEX扫描电镜-能谱仪得到的结果相比较,两者在反应夹杂物分布趋势上具有一致性,说明原位统计分布分析技术分析铸坯中夹杂物的粒度分布方法的建立具有可靠性。 相似文献
11.
12.
13.
车轮轮箍钢失效与夹杂物控制 总被引:4,自引:0,他引:4
钢中夹杂物是导致车轮轮箍疲劳失效的主要原因,尤其是Al2O3链状夹杂物的影响最大,在常规生产条件下,采用减铝和复合脱氧可有效减少钢中Al2O3夹杂;采用喷Si-Ca粉、喂Si-Ca线工艺对钢中Al2O3夹杂进行变性处理,以及在真空精炼工艺条件下,采用降低铝量和精炼后期用Ca、Ba系复合合金处理工艺,可显著降低车轮轮箍钢中Al2O3夹杂级别和数量,提高车轮轮箍钢的使用性能。 相似文献
14.
15.
为更好了解与试样电火花烧蚀有关的实验现象,我们设计了一种新算法,并报道了其用于测定夹杂物尺寸的结果。在此算法中,用元素氧化物、硫化物和氮化物测量通道的单火花强度分析技术测定了某一特定类型夹杂物中各元素的浓度,包括铝、钙、镁、锰、钛以及硅等。对每个相关通道,计算了指定类型夹杂物有关的强度峰值对应的强度值之和与所有强度值和之间的比值。在光谱化学分析中,此比值与测试浓度相乘,所得结果为指定类型夹杂物中元素的平均浓度。结合单火花烧蚀质量与夹杂物成分的化学计量学分析,可以估算夹杂物的尺寸。通过进一步的分析可以实现夹杂物尺寸(小、中和大级别)的辨别。本方法的创新性在于,单火花源强度既不需要漂移修正也不需要校正。本算法可以直接用于计算钢中大部分常见夹杂物的平均浓度和尺寸的分析,例如氧化物、硫化物和尖晶石。测定结果显示夹杂物的平均直径在1~10μm之间。 相似文献
16.
以U75V高速重轨钢为例,研究了加热保温处理对MnS夹杂的影响。采用高温共聚焦激光显微镜分别对铸坯和钢轨中MnS夹杂在连续升温过程中的行为进行了动态原位观察,结果表明MnS夹杂在600~870℃发生球化,在1180℃左右时, MnS夹杂开始发生固溶。根据原位观察结果,在电阻炉中进行了加热保温处理实验。试验结果表明,830℃保温后,MnS夹杂尺寸只是略有减少,长宽比降低。在1180℃保温后,大型MnS夹杂数量明显减少,小尺寸MnS数量增多,且随保温时间的延长,夹杂物数量减少,长宽比进一步降低。通过加热保温处理可以改善重轨钢中长条状大型MnS夹杂。 相似文献
17.
18.
19.