首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用压热法处理红芸豆粉,以抗性淀粉含量为指标,在单因素试验的基础上通过响应面法优化抗消化红芸豆粉的制备工艺。结果表明:最佳工艺条件为红芸豆粉悬浊液质量分数19%、压热温度125℃、压热时间35 min、冷藏时间25 h,在此条件下红芸豆中抗性淀粉含量为29.82%±0.17%。压热处理能显著增加红芸豆淀粉含量,显著降低红芸豆水分含量,有效降低红芸豆的水解指数(HI)和估计血糖生成指数(eGI)。  相似文献   

2.
压热法制备淮山药抗性淀粉及其消化性   总被引:1,自引:0,他引:1  
研究压热法制备淮山药抗性淀粉的影响因素与抗性淀粉得率的关系,采用三因素二次通用旋转组合设计,优化淮山药抗性淀粉的制备工艺,试验结果表明:淀粉乳含量、pH值、压热时间对抗性淀粉得率的影响极显著,影响因素主次顺序依次为淀粉乳含量、淀粉乳pH值和压热时间;最佳工艺条件为淀粉乳含量25.20%,pH6.26,压热时间42.85 min,在此条件下测得的淮山药抗性淀粉得率为25.27%。In-Vitro体外模拟人体消化的试验表明,淮山药抗性淀粉较淮山药原淀粉更难消化,且抗性淀粉含量越大越难以消化。  相似文献   

3.
通过比较抗性淀粉含量和体外消化性能试验筛选板栗RS3型抗性淀粉最佳制备方法,并采用正交试验进行优化,确定板栗RS3型抗性淀粉的最佳制备工艺。结果表明,压热-酶解法制备的抗性淀粉含量显著高于压热法和微波法(P<0.05),且体外消化率最低,故选择压热-酶解法为最佳制备方法。单因素试验证明:淀粉乳浓度,酶解时间,酶用量以及压热温度是影响压热-酶解工艺的主要因素。正交试验确定板栗RS3型抗性淀粉最佳制备工艺条件为:淀粉乳浓度20%、酶解时间6h、酶用量25 npun/g淀粉、压热温度100℃,在此条件下抗性淀粉含量为10.01%。综上压热-酶解法是制备板栗RS3型抗性淀粉的最佳方法,具有一定的应用前景。  相似文献   

4.
压热-冷却循环工艺对淀粉理化特性及消化动力学的影响   总被引:1,自引:0,他引:1  
以高直链玉米淀粉和普通玉米淀粉为原料,采用压热-冷却循环工艺分别制备糊化淀粉、老化淀粉及抗性淀粉,测定各淀粉样品的理化指标及消化动力学。研究结果表明,由普通玉米淀粉经过压热处理制备的糊化淀粉和老化淀粉具有最佳的溶胀度和冻融稳定性(P0.05);老化普通玉米淀粉和老化高直链玉米淀粉中的慢消化淀粉含量显著增加(P0.05);消化动力学分析表明抗性淀粉样品中的RS含量与平衡浓度、水解指数、血糖指数呈负相关,SDS在不影响平衡浓度的情况下,能够缓慢持续释放能量。压热循环处理不仅能够显著改变淀粉的理化性质,而且改性处理后的老化淀粉和抗性淀粉能够作为脂肪模拟物得以广泛应用。  相似文献   

5.
本文以抗性淀粉产率为测定指标,对不同淀粉乳浓度、压热时间和压热温度对黄米抗性淀粉制备的影响进行了系统分析,在对压热处理前后黄米淀粉的理化性质与微观结构进行比较的基础上,研究了不同黄米抗性淀粉的添加量对饼干的质构和GI值的影响。结果表明:淀粉乳浓度为10%、压热时间为40 min、压热温度为120℃的条件下,压热法制备的黄米抗性淀粉的产率最佳,其产率可达30.64%。进一步的检测分析结果显示,与黄米淀粉相比,经压热处理制备的黄米抗性淀粉的透光率、溶解度和膨胀力均明显下降。与黄米淀粉颗粒粒径较小、表面相对光滑平整不同,经压热处理制备的黄米抗性淀粉呈片状、表面粗糙且存在孔状凹陷。将制备的抗性淀粉代替部分面粉制作饼干时发现,随着抗性淀粉添加量的增大,饼干的剪切力增大,GI值明显降低,使得饼干从高GI值食品转化为了中GI值食品,符合消费者对中低GI值食品的需求。  相似文献   

6.
以青稞淀粉为原料,探讨压热冷却循环法制备青稞抗性淀粉的过程中淀粉溶液质量分数、冷藏时间、循环次数对抗性淀粉含量的影响,利用单因素和正交实验优化工艺。结果表明,最佳工艺条件为:青稞淀粉溶液质量分数10%、冷藏24 h、4次压热冷却循环,所得抗性淀粉含量最高,为(8.57±0.10)%。对最佳工艺条件下所制备的青稞抗性淀粉的理化性质进行表征,结果表明,经过压热冷却循环处理后,快消化淀粉(RDS)和慢消化淀粉(SDS)含量均减少,抗性淀粉含量增加至(8.57±0.10)%。颗粒形态由扁球状变成形状不规则的块状且表面形成大量沟壑,晶型由A型变为V型,峰值黏度和最终黏度显著降低。  相似文献   

7.
以酶解-压热法制备紫山药抗消化淀粉,考察了淀粉乳浓度、普鲁兰酶用量、酶解时间、压热时间对制备淀粉中抗消化淀粉含量的影响,通过正交试验和方差分析明确影响因素的重要性并优化工艺条件;比较分析了糊化淀粉、压热淀粉以及酶解-压热法制备淀粉的水解动力学。结果表明:酶解-压热法制备紫山药抗消化淀粉的含量随各因素水平的增加呈先增加后减小的趋势,优化的条件为:淀粉乳质量分数20%、普鲁兰酶用量8 U/g、酶解12 h、以120℃压热处理40 min 2次时,制备抗消化淀粉样品纯度为96.67%,其中抗消化淀粉含量为47.85%;水解特性研究表明:与糊化、压热法相比,酶解-压热法制备抗消化淀粉的水解率、水解指数与血糖指数均显著降低,具有更好的抗消化性。  相似文献   

8.
以淮山薯为原料,通过脱支酶解-压热法制备RS3抗性淀粉。以抗性淀粉得率为指标,在单因素试验的基础上通过正交试验优化制备工艺,并通过体外消化模拟试验评价RS3抗性淀粉的消化性能。结果表明:最佳制备工艺为淀粉乳质量分数25%、普鲁兰酶添加量200 U/g(以干基淀粉质量计)、酶解时间12 h、老化时间18 h,在此条件下RS3抗性淀粉得率为16.95%±0.22%;淀粉还原糖释放量为11.35%±0.20%,RS3抗性淀粉还原糖释放量为8.42%±0.14%(P<0.05),表明RS3抗性淀粉比淀粉抗消化能力更强。  相似文献   

9.
酶解-压热法制备淮山药抗性淀粉   总被引:3,自引:0,他引:3  
以淮山药淀粉为原料,通过正交试验研究酶解-压热法制备抗性淀粉的最佳工艺参教.在压热法的最佳工艺基础上,通过使用普鲁蓝酶处理淀粉,使产率大大提高,该法所得的产率最高可达16.47%左右.确定压热处理最佳工艺条件为淀粉乳浓度25%,pH值8.0,121℃压热处理40 min,冷藏老化时间为36 h.确定制备抗性淀粉的最佳酶作用参数为加酶量4 U/g干淀粉,作用温度55℃,作用时间8 h.  相似文献   

10.
以油莎豆淀粉为原料,用压热法、酶法和压热-酶法制备油莎豆抗性淀粉(分别记为A-CRS、E-CRS和AD-CRS),研究其结构特征和体外消化特性。结果表明,油莎豆淀粉颗粒光滑饱满,形状不一,而抗性淀粉的形态发生显著变化,结构不完整,外观粗糙。油莎豆淀粉为A型晶体结构,三种抗性淀粉为C+V型结构。与原淀粉相比,三种抗性淀粉的平均粒径增大,RS含量、结晶度和热稳定性均显著提高,而平均聚合度降低, 其中AD-CRS的结构最紧密,结晶度最高。体外模拟消化显示A-CRS、E-CRS和AD-CRS的消化速率均小于原淀粉,其血糖指数(GI)分别为39.86、39.84、39.83,属于低GI食品(GI<55)。综上所述,油莎豆抗性淀粉的结构较紧密,具有较强的体外抗消化能力和调控血糖的潜力。  相似文献   

11.
为探究压热辅助酶解法制备马蹄抗性淀粉的最优工艺及特性,以马蹄淀粉为原料,设计淀粉乳浓度、酶添加量、酶处理时间3个单因素,并以制备后样品中的抗性淀粉得率为响应值对工艺条件进行优化,同时对样品进行扫描电镜(Scanning electron microscope,SEM)观察并测定直链淀粉和支链淀粉含量等理化特性。结果表明,淀粉乳浓度25.56%、酶添加量15.87 ASPU/g(干基)、酶处理时间35.75 h为最优的制备工艺,在此工艺下得到的抗性淀粉得率最高为16.32%,与预测值16.1093%相近,证明响应面模型与实际情况拟合良好。理化特性研究发现:抗性淀粉中的直链淀粉含量为31.78%,显著高于原淀粉,是原淀粉的242.9%;碘吸收特性曲线发现,原淀粉的最大吸收峰在600~650 nm之间,抗性淀粉的最大吸收峰在550~600 nm之间,抗性淀粉的λmax相对原淀粉出现了左移,表明抗性淀粉中直链淀粉与支链淀粉比例发生了改变;红外光谱分析发现,抗性淀粉的R1047/1022值和R1022/995值均高于原淀粉,表明抗性淀粉具有更高的结晶度。研究结果可为压热辅助酶解制备马蹄抗性淀粉的...  相似文献   

12.
以大米粉为原料,考查了压热法、湿热法、韧化法处理大米粉对其抗性淀粉含量、基本成分、RVA黏度、透明度、溶解度和膨胀能力的影响。结果表明:压热、湿热、韧化处理均能提高大米粉中抗性淀粉含量。其中压热处理大米粉的抗性淀粉含量最高,可达12.70%。米粉乳浓度、处理温度、处理时间对不同水热处理有不同程度的影响。水热处理前后脂质含量的显著降低说明:在水热处理过程中,脂质参与形成了具有淀粉酶抗性的复合物。压热和湿热大米粉的RVA、透明度变化与大米粉、韧化大米粉差异较大,表明这2种水热处理后淀粉发生老化;压热后大米粉溶解度、膨胀度明显高于湿热、韧化处理,分析压热处理可能对大米粉结构造成影响。  相似文献   

13.
郑琳  张元元  齐明 《现代食品科技》2011,27(6):647-650,657
研究压热法制备白扁豆抗性淀粉的工艺参数.以白扁豆淀粉为原料,采用压热法制备RS3型抗性淀粉,并通过单因素试验和正交试验,以抗性淀粉的产率作为评价指标确定抗性淀粉制备的最佳工艺参数.实验结果表明抗性淀粉制备的最佳工艺参数为淀粉糊浓度15%,pH为8,温度为125℃,时间为1.5 h,老化处理时间为36h,在此工艺条件下制...  相似文献   

14.
以玉米为实验材料,通过研究压热处理、老化处理以及干燥条件对产品抗性淀粉含量的影响,对富含抗性淀粉的营养金玉米制备工艺参数进行优化。结果表明,质量分数40% 的玉米糊,125℃压热处理60min,4℃老化6h,60℃干燥16h,金玉米产品中抗性淀粉的质量分数可达到10.5%。  相似文献   

15.
为探究酸热法制备小麦抗性糊精的最佳制备工艺、结构及其消化特性,该试验以小麦淀粉为原料,以抗性糊精得率为指标,通过单因素和响应面试验对小麦抗性糊精制备酸热条件进行优化,对其结构进行表征,并考察其体外消化特性。抗性糊精的最佳酸热工艺条件为盐酸浓度0.075 mol/L、酸热温度180 ℃、酸热时间95 min,经α-淀粉酶、淀粉葡糖苷酶酶解后抗性糊精得率为(43.83±0.08)%,抗性糊精含量为(86.99±0.23)%。抗性糊精微观结构形态呈无规则小碎片状,表面富有孔洞,不再具有小麦淀粉“A”型晶体结构,没有新的官能团产生,抗性糊精重均分子质量为7.39×103 g/mol;通过体外模拟消化试验表明小麦抗性糊精水解率远小于小麦淀粉,抗性糊精具有良好的抗消化性。  相似文献   

16.
大米抗性淀粉压热处理制备工艺的研究   总被引:2,自引:0,他引:2  
抗性淀粉以其显著优点及特殊的生理功能,成为食品营养学的一个研究热点。以大米淀粉为原料,制备大米抗性淀粉对大米的深加工具有重要的经济意义。以抗性淀粉得率为评价指标,通过单因素及正交试验研究了压热法制备抗性淀粉的最佳工艺参数。结果表明,对大米淀粉进行压热处理时,影响抗性淀粉得率的主次因素为:热处理温度热处理时间淀粉乳质量分数,最佳工艺条件为:热处理温度120℃,热处理时间70 min,淀粉乳质量分数30%。采用此组合进行验证性试验得抗性淀粉产率为9.54%。  相似文献   

17.
为了探究不同温度的压热处理对3种不同晶型(A型、B型、C型)淀粉颗粒结构和消化特性的影响,将玉米淀粉、马铃薯淀粉和豌豆淀粉在110、120、130℃压热条件下进行处理,并采用XRD、SEM、RVA、DSC和酶解等方式表征不同处理前后淀粉样品的理化性质和消化特性。结果表明,压热处理后淀粉的糊化特性显著改变,峰值黏度、回升值、最终黏度、崩解值降低,糊化温度升高。微观结构分析表明,压热处理过程中的水分和热能会使淀粉颗粒部分糊化,进而导致颗粒表面出现凹陷。压热处理后的马铃薯淀粉逐渐失去B型结晶的特征衍射峰,并显现出A型结晶的特征。与原豌豆淀粉相比,压热处理后的豌豆淀粉晶型有从C型转为A型的趋势,而玉米淀粉的衍射峰没有的明显变化。此外,压热处理后不同晶型淀粉中抗性淀粉的质量分数均显著升高(P<0.05)。作者系统揭示了压热处理后不同晶型淀粉结构及消化特性的变化规律,为后续利用压热法制备具有低消化率的淀粉基食品提供了理论支撑。  相似文献   

18.
奶白花芸豆淀粉颗粒结构及理化特性研究   总被引:1,自引:0,他引:1  
研究奶白花芸豆淀粉的颗粒结构及基本理化性质。结果表明:奶白花芸豆中直链淀粉含量较高,为37.1%;芸豆淀粉-碘的最大吸收光谱在波长617nm附近;芸豆淀粉颗粒较大的呈现卵形,颗粒大小分布较均匀。X射线衍射分析表明,该芸豆淀粉属于A型结晶结构;芸豆淀粉的粒度均呈光滑单峰型,分布曲线为正态分布,高峰出现在21.12~23.51μm处。芸豆淀粉颗粒偏光十字极其明显。芸豆淀粉糊凝沉性质表明该淀粉容易老化;芸豆淀粉糊的透光率在0~12h内没有显著变化,12~24h内透明度呈显著下降趋势,24~48h内没有显著变化。在质量浓度为2g/100mL时,析水率最高,冻融稳定性最差;差示扫描量热仪(DSC)分析结果表明,起始糊化温度为61.3℃,2个糊化峰值温度分别为73℃和74.6℃,糊化结束温度为83.4℃,糊化所需焓值为50.55J/g。淀粉糊质量浓度对其黏度具有显著影响,4g/100mL为该芸豆淀粉成糊临界质量浓度。  相似文献   

19.
以高直链玉米淀粉G50和G70为原料,经酸解、糊化、脱支和重结晶步骤获得III型抗性淀粉,通过退火与压热处理以进一步提升淀粉的抗性比例。采用扫描电子显微镜、X射线衍射、差示扫描量热、快速黏度分析等方法,研究淀粉颗粒形貌、结晶结构、热特性及糊化特性,利用Englyst法测试淀粉消化特性。结果表明:高直链玉米淀粉G50和G70酸解后的得率分别为77.9%和84.5%,重结晶后的得率降为54.4%和70.2%。原G50和G70改性后,淀粉颗粒形貌被破坏,形成大小不等、颗粒形貌不规则的团聚体;淀粉结晶型由B+V型转变为A+V型,且结晶度升高;淀粉糊化温度升高,且加热过程中黏度几乎消失。溶解与膨胀特性结果表明,经酸解、糊化、脱支和老化处理后原G50和G70的溶解性显著升高,退火和压热处理后降低了III型抗性淀粉的溶解性和膨胀度。体外消化特性分析表明,改性后的G50和G70具备更强的抗消化性能,抗性淀粉含量最高可达80.5%(G70-RS3-压热20%)。本研究的改性处理能有效提高高直链玉米淀粉G50和G70中抗性淀粉含量,同时抗性淀粉含量与结晶度和糊化温度呈显著正相关。  相似文献   

20.
研究了压热法制备荞麦抗性淀粉的工艺参数。比较了不同淀粉乳浓度、热处理温度、热处理时间、淀粉乳pH值对荞麦抗性淀粉得率的影响。采用三因素二次回归旋转正交组合设计,优化荞麦抗性淀粉制备参数,建立了各因子与荞麦抗性淀粉得率关系的数学回归模型,确定了最佳的制备条件:淀粉乳浓度为59.41%,压热处理温度为123.33℃,压热时间60.79min,荞麦抗性淀粉的产率理论最高值可达16.6053%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号