共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现在广泛使用的三维形变模型表达能力不够,导致重建出的三维人脸模型泛化性能不佳的问题,提出了一种在姿态、表情和光照未知的条件下的基于单张人脸图片的三维人脸重建和密集人脸对齐的新方法。首先,通过卷积神经网络对现有的三维形变模型进行改进,以提高三维人脸模型的表达能力;然后,基于人脸光滑性和图像相似性,在特征点和像素层面提出新的损失函数,并使用弱监督学习训练卷积神经网络模型;最后,通过训练出的网络模型进行三维人脸重建和密集人脸对齐。实验结果表明,对于三维人脸重建任务,所提模型在AFLW2000-3D上实现了2.25的归一化平均误差;对于密集人脸对齐任务,所提模型在AFLW2000-3D和AFLW-LFPA上分别实现了3.80和3.34的归一化平均误差。与原始使用三维形变模型的方法相比,所提模型在三维人脸重建和密集人脸对齐上的归一化平均误差分别降低了7.4%和7.8%。针对不同光照环境以及角度的人脸图片,该网络模型的重建准确,鲁棒性好,且具有较高的三维人脸重建和密集人脸对齐质量。 相似文献
2.
针对现在广泛使用的三维形变模型表达能力不够,导致重建出的三维人脸模型泛化性能不佳的问题,提出了一种在姿态、表情和光照未知的条件下的基于单张人脸图片的三维人脸重建和密集人脸对齐的新方法。首先,通过卷积神经网络对现有的三维形变模型进行改进,以提高三维人脸模型的表达能力;然后,基于人脸光滑性和图像相似性,在特征点和像素层面提出新的损失函数,并使用弱监督学习训练卷积神经网络模型;最后,通过训练出的网络模型进行三维人脸重建和密集人脸对齐。实验结果表明,对于三维人脸重建任务,所提模型在AFLW2000-3D上实现了2.25的归一化平均误差;对于密集人脸对齐任务,所提模型在AFLW2000-3D和AFLW-LFPA上分别实现了3.80和3.34的归一化平均误差。与原始使用三维形变模型的方法相比,所提模型在三维人脸重建和密集人脸对齐上的归一化平均误差分别降低了7.4%和7.8%。针对不同光照环境以及角度的人脸图片,该网络模型的重建准确,鲁棒性好,且具有较高的三维人脸重建和密集人脸对齐质量。 相似文献
3.
三维人脸相较于二维人脸包含了更多特征信息,可应用于如人脸识别、影视娱乐、医疗美容等更多实际应用场景,因此三维人脸重建技术一直是计算机视觉领域的研究热点.由于真实三维人脸数据较难获取,很多基于深度学习的重建算法首先利用传统重建方法为大量二维人脸图像构建三维标签,作为训练数据,这些数据可能并不精准,从而导致算法的重建精度受到影响.为此,本文提出一种基于multi-level损失函数的弱监督学习模型,结合传统三维人脸形变模型3DMM与深度学习方法,直接从大量无三维标签的二维人脸图像中学习三维人脸特征信息,从而实现基于单张二维人脸图像的三维人脸重建算法.此外,为解决二维人脸图像中常存在遮挡或大姿态情况而影响人脸纹理重建的问题,本文使用基于CelebAMask-HQ数据集的人脸解析分割算法对图像进行预处理去除遮挡区域.实验结果表明,基于本文方法的三维人脸重建质量与重建精度均实现了一定的提升. 相似文献
4.
5.
提出了一种多阶段优化的方法来解决基于多视角图片在未知姿态、表情以及光照条件下的高精度三维人脸重建问题.首先,通过重新渲染合成的方法将参数化模型拟合到输入的多视角图片,然后在纹理域上求解一个光流问题来获取不同视角之间的对应关系.通过对应关系可以恢复出人脸的点云,并利用基于明暗恢复几何的方法来恢复人脸细节.在真实数据以及合成数据下的实验结果表明,文中方法能够恢复出带有几何细节的高精度的三维人脸模型,并且提高了现有方法的重建精度. 相似文献
6.
针对图像驱动的三维人脸建模这个计算机图形学中的研究热点问题,提出一种采用三维人脸形变模型的三维人脸自动生成与编辑算法.首先建立三维人脸形变模型,由三维人脸数据库统计学习得到线性混合人脸模型,用一个低维的参数向量来描述一个人脸;然后通过人脸检测、人脸对齐、边缘提取等方法从人脸图像中提取人脸的特征,根据这些特征实现三维人脸形变模型与图像的匹配,重建出与图像对应的三维人脸模型;最后,通过改变参数向量的值实现人脸的编辑.对5个输入人脸照片进行了三维人脸模型重建和编辑并且将重建的人脸模型和真实人脸模型进行了对比,实验结果表明,该算法可实现真实化的人脸重建效果. 相似文献
7.
8.
9.
10.
11.
三维建模是计算机视觉和计算机图形学领域中一个基本的问题,人脸借助其特有的普遍性和易用性成为众多先进三维建模算法的实验平台。但是由于人脸的复杂性、易变性,建立逼真的三维人脸模型成为众多研究者挑战的课题。本文分析了三维人脸建模的研究内容和研究难点,总结了1990年以来出现的最新方法和进展,从三维数据的获取、标准三维人脸建模、特定三维人脸建模及应用等三维建模的几个主要环节进行了分类综述,重点介绍了一些主要算法的基本思路和最新进展,并对该领域的研究热点和方向作了较为详细的分析。 相似文献
12.
董洪伟 《计算机辅助设计与图形学学报》2012,24(7):932-940
从图像重建高质量三维人脸一直是计算机视觉和图形学的一个重要研究问题.不同于传统的基于立体匹配的窄基线多视几何和数据驱动的人脸形变方法,提出一种结合网格变形技术和立体视觉原理的、从图像重建高质量三维人脸模型方法.给定从不同视角拍摄的几幅人脸图像,基于健壮图像特征获得可靠的相机外部参数和稀疏三维点;在此基础上,提出一种结合几何细节保持和图像一致性约束的三维人脸变形算法重建三维人脸,通过对人脸模板的网格变形,使得变形人脸在多幅图像中的可见投影具有一致性的图像颜色强度.基于模板的人脸变形可以有效地解决三维模型成像中的遮挡问题,采用健壮估计法消除噪声、离群点和光照对目标函数收敛性的影响,对目标函数的多次非线性优化求解进一步改进了人脸重建的质量.采用合成人脸图像和真实人脸图像重建三维人脸的实验结果表明,文中算法可以从几幅宽基线图像重建高质量的三维人脸模型. 相似文献
13.
针对传统三维人脸重建算法效率低且难以满足实际应用的缺陷,提出一种基于特征分块的三维人脸重建算法,并将此算法应用到三维人脸识别中,实现了基于特征分块的加权三维人脸识别。首先,利用基于平面模板的非均匀重采样法对原始数据进行归一化;其次,采用主动形状模型(ASM)算法对三维人脸和二维人脸图像进行特征定位和特征分块;然后,利用基于分块主元分析(PCA)的稀疏形变模型算法实现每个人脸分块的三维重建;最后,实现了此算法在三维人脸识别中的应用。实验表明,此重建算法具有较高的精度和重建效率,还可以达到全局最优,并且可以提高三维人脸的识别率。 相似文献
14.
《传感器与微系统》2019,(9)
非约束条件下,由于传统神经网络对于单个个体人脸表情变化过于敏感而对不同个体间人脸灵敏度有限,从而导致构建的三维模型几何特征与个体不匹配。针对上述问题,提出一种基于具有较强鲁棒性的自监督深度学习的人脸表征及三维重建算法,有效利用二维人脸的特征点信息自动映射到三维空间中实现三维人脸重建。选用Efficient Net为主体框架获取面部特征向量及三维形变模型参数,并在孪生神经网基础上引入对比损失函数扩大类间间距,减少类内间距,同时提出身份损失函数保留特征空间中同一个体的身份信息增强对形变的鲁棒性。在300W—LP和AFLW2000—3D数据集上,该算法均有不错的表现。 相似文献
15.
16.
在人脸图像识别优化的研究中,针对由单张人脸图像重建三维模型时对人脸图像姿态存在要求的问题,为了提高识别精度,提出基于单张人脸图像姿态预估计和主成分分析(PCA)的形状模型重建算法.首先由三维姿态估计方法得到人脸姿态,并建立人脸形状模型样本库,然后通过选取的特征点,利用主成分分析进行三维人脸形状模型的重构,最后利用径向基函数(RBF)变换和特征点坐标精确调整三维人脸形状模型,并进行仿真.仿真结果表明,重构的三维人脸形状模型效果良好,提高了精度,对有旋转姿态的人脸图像和特征点定位误差也有很好的鲁棒性. 相似文献
17.
吴凯 《网络安全技术与应用》2014,(11):161-162
本文提出了基于形变模型的多视图三维人脸重建方法,将人脸形变模型与同一人脸在不同视点下的多幅图像进行匹配,从而重建出具有较强真实感的三维人脸模型。本文将对基于形变模型的多视图三维人脸重建方法进行详细的阐述,并把实验结果与单视图重建出的三维人脸模型进行了对比,从而体现出多视图重建的优势所在。 相似文献
18.
基于深度神经网络的无监督单视角三维人脸重建已取得显著成功,其依赖光度渲染以及对称正则化从二维单视角图像进行训练,但是单视角图像由于自遮挡与光照影响缺乏可信的人脸几何与纹理约束.因此,提出了一种基于跨视角一致约束的两阶段的单视角三维人脸重建框架.首先,局部网络并行地估计多个视角的局部人脸纹理与UV位置图,利用低维统计人脸模型3DMM对自遮挡造成的缺失区域几何与纹理进行填充;在第2阶段中,补全网络对各视角的局部纹理与UV位置图进行补全并改进,重建具有细节的完整三维人脸几何与纹理.设计了关于光度渲染、人脸纹理、与UV位置图的跨视角一致约束函数,以无监督学习机制从多视角人脸图像数据优化端到端模型.实验结果表明,所提方法可有效地从单视角图像估计人脸姿态,对遮挡区域中人脸几何与纹理合理补全,重建带有几何与纹理细节的高质量三维人脸.特别地,在MICC Florence数据集上,所提方法较对比算法重建人脸的均方根误差降低了6.36%. 相似文献
19.
为解决传统立体匹配算法匹配低纹理人脸图像时极易产生误匹配的问题,提出一种基于区域生长的人脸立体匹配算法。该算法利用级联回归树算法提取的人脸特征点将人脸划分为不同区域以分别限制各区域的视差搜索范围,从而避免在全局范围上查找匹配点;同时利用人脸的局部形状特性,采用局部曲面拟合的方式筛除误匹配种子点并生成大量可靠种子点用于区域生长;最后,分别在实验室环境采集的人脸图像和FRGC v2.0人脸数据库上进行定性和定量实验。实验结果表明,与传统算法相比,所提算法能够重建出更加准确的三维人脸模型。经点云配准后与人脸点云真实值的均方根误差在2 mm以内,且不同光照、姿态、表情下人脸图像的重建表明所改进的立体匹配算法具有较好的鲁棒性。 相似文献