首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
目前国内外关于电化学辅助磷化的研究报道较少。采用硫酸铜点滴试验、塔菲尔极化曲线研究了电化学辅助制备磷化膜的耐蚀性,探究电化学辅助磷化的最佳配方及工艺条件。通过单因素试验优化磷化液组分,通过正交试验优化工艺条件。结果表明,电化学辅助可以显著降低磷化温度、缩短磷化时间、减少磷化渣,优选出的磷化液组成为:5.00 g/L ZnO,13.00 mL/L磷酸(85%),20.00 g/L Zn(NO_3)_2·6H_2O,1.00 g/L酒石酸钾钠,1.00 g/L NH_4HF_2,1.20 g/L NaClO_3,5.00 g/L磷酸二氢锌,0.08 g/L CuSO_4;最优工艺参数为电流密度1.2 A/dm~2,温度35℃,通电时间7 min。最优工艺下所得磷化膜耐硫酸铜点滴试验时间达860 s;磷化时间1 min时,所得磷化膜硫酸铜点滴试验耐蚀性为61 s(远优于化学磷化的19 s),磷化膜外观均匀、致密。  相似文献   

2.
李亚娟  梁平  秦华 《材料保护》2013,46(4):10-12,6,7
磷化液中添加氟化钠可改善磷化膜质量,目前对此研究还不系统。分别用添加氟化钠和未添加氟化钠的磷酸二氢铵-高锰酸钾磷化液在AM60镁合金表面制备磷化膜,采用扫描电镜(SEM)、能谱仪和电化学测试对2种磷化膜的表面形貌、成分和耐蚀性进行评价。结果表明:磷化膜可以完整覆盖基体表面,有效地将镁合金与腐蚀介质隔离,提高了镁合金的耐蚀性;添加了氟化钠的磷化膜致密性更好,对镁合金耐蚀性的提高效果更为显著。  相似文献   

3.
以磷酸盐化学转化膜为研究体系,采用动电位极化和交流阻抗分析方法及检测手段,研究乙醇胺添加剂及其浓度对AZ91D镁合金磷化膜耐蚀性能的影响.研究发现,(1)乙醇胺(MEA)作为添加剂可有效改善AZ91D镁合金表面磷化膜的耐蚀性能.在MEA添加量为1.2g/L时,磷化膜的耐蚀性最好.添加乙醇胺1.2g/L时制备的磷化膜,在3.5%(质量分数)NaCl溶液中的耐蚀性能比AZ91D镁合金基体提高了10倍;(2)MEA浓度在0.4~1.2g/L时,磷化膜的R_(ct)随MEA浓度增加成线性增长关系.MEA浓度1.2g/L时达到最大值.磷化膜的R_p在MEA浓度为1.2g/L时达到最高值.当MEA浓度继续增加时,R_p明显下降.MEA浓度控制在0.8<C_(MEA)<1.6g/L时获得的磷化膜的耐蚀性能最好.  相似文献   

4.
钼酸钠对热镀锌钢板表面磷化膜电化学行为的影响   总被引:1,自引:0,他引:1  
林碧兰  卢锦堂  孔纲  刘军 《材料保护》2006,39(10):5-7,11
在磷化液中添加钼酸钠可改善和提高热镀锌钢板表面磷化膜的质量.运用极化和电化学阻抗的测试方法,研究了磷化液中加入钼酸钠对热镀锌钢板表面磷化膜在5%NaCl溶液中的电化学行为的影响.结果表明,在磷化液中加入钼酸钠可促进磷化膜生长,大大降低电化学体系的腐蚀电流密度,提高其极化电阻和电化学阻抗,改善膜层的耐蚀性能.最佳的钼酸钠用量为1.0g/L,膜层呈暗灰色,膜重为1.6g/m2,耐硫酸铜点蚀时间大于65 s.当钼酸钠用量为2.0g/L时,膜层的各项性能指标均下降.  相似文献   

5.
通过化学氧化工艺在MB8镁合金表面制备了化学转化膜,研究了氧化液种类、浓度对镁合金及表面转化膜的电化学腐蚀行为的影响,用扫描电镜观察了表面转化膜电化学腐蚀前后的微观形貌,用电化学分析系统测试了不同溶液中的塔菲尔极化曲线,并对MB8镁合金的氧化及电化学腐蚀行为进行了分析.结果表明,经1.5 min处理可以得到防护性能较好的氧化膜层,在0.5 mol/L H2SO4、0.5 mol/L NaOH和3.5%NaCl溶液中,带氧化膜镁合金的耐蚀性都比镁合金基体的耐蚀性好.  相似文献   

6.
为了减少环境污染和降低能耗,开发了一种高效环保的ZA61镁合金低压直流阳极氧化新工艺,采用电化学方法研究了氧化工艺参数对膜层耐蚀性的影响,获得了最佳工艺配方及参数为:100 g/L NaOH,30 g/LAl(OH)3,34g/L NH4HF2,34 g/L Na3PO4,电流密度0.03 A/cm2,最终电压DC 150 V,室温,阳极氧化时间600 s.耐蚀性测试结果表明,相对于AZ61镁合金基体和广泛应用的DOW17氧化膜,本工艺最佳参数下所得阳极氧化膜的腐蚀电位和点蚀电位均有明显提高,腐蚀电流密度显著下降,约为未处理AZ61镁合金的1/110,DOW17膜层的1/4.  相似文献   

7.
电流密度对镁合金微弧氧化膜结构和性能的影响   总被引:2,自引:1,他引:1  
梁军  郝京诚 《材料保护》2007,40(8):24-26,29
电流密度是影响微弧氧化膜层结构和性能的主要因素之一.采用测厚仪、扫描电镜(SEM)、电化学测试等手段研究了AM60B镁合金在不同电流密度下硅酸盐溶液中微弧氧化膜层的结构和耐蚀性能.结果表明,随电流密度的增大,氧化膜厚度呈线性增加;氧化膜的表面微孔数目减少,微裂纹扩展程度增大.电化学腐蚀测试结果显示,电流密度9.0 A/dm2下生成的氧化膜耐蚀性最好,主要与膜层较致密的微观结构有关.  相似文献   

8.
为提高镁锂合金的耐蚀性,在镁锂合金表面制成了耐蚀性能较好的锰系磷化膜,采用极化曲线、电化学阻抗谱、时间电位曲线等电化学测试方法及SEM、EDS分析方法,研究了镁锂合金锰系磷化主盐浓度、磷化时间、金属离子、磷化助剂对磷化膜耐蚀性的影响,测试了试样在加入不同磷化助剂磷化时表面电极电位随时间的变化,观察了不同时间、温度条件下磷化膜的微观形貌,对比了锰系、锌系磷化膜的微观形貌,分析了膜层的组成.结果表明,随主盐高锰酸钾浓度的增加,膜层耐蚀性增加,适宜的磷化时间为20min,镍离子对磷化的促进作用大于铜离子,柠檬酸钠为较好的磷化助剂,锰系磷化膜较平整光滑,但膜层带有裂纹,随温度的增加裂纹加深,膜层的主要成分为磷酸锰.  相似文献   

9.
为了研究聚苯胺(PANI)/银复合薄膜对不锈钢的防腐蚀性能,采用循环伏安法在不锈钢表面沉积一层Ag后,再通过对苯胺的电化学聚合制备了PANI膜。利用阳极极化法和交流阻抗法研究了PANI/Ag复合膜的耐蚀性及其影响因素。结果表明:在0.1 mol/L NaC l溶液中,不锈钢覆盖复合膜后的自腐蚀电位比无膜时有所提高,其耐蚀性能得到增强;电化学聚合溶液浓度、扫描速率及扫描上限等因素对复合膜耐蚀性的影响情况为:电解液中苯胺和硫酸浓度过高或过低都会影响膜的致密度,从而影响复合膜的耐蚀性;电化学参数的变化会影响复合膜的聚合速率,使复合膜的抗腐蚀能力不同;当苯胺单体浓度为0.2 mol/L、硫酸浓度为1 mol/L、扫描电位上限为1 V、扫描次数为50次、扫描速率为50 mV/s时,采用循环伏安法聚合苯胺,可形成沉积致密度高、耐蚀性好的复合膜。  相似文献   

10.
镁合金高压阳极氧化工艺研究   总被引:1,自引:0,他引:1  
为开发耐蚀性能优良的镁合金阳极氧化工艺,用正交试验对AZ91D镁合金高压阳极氧化成膜工艺进行了研究,并利用扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、全浸腐蚀试验和极化曲线等分别研究了镁合金阳极氧化膜层的表面形貌、相成分、元素成分、价态和膜层的耐蚀性等.获得了AZ91D镁合金高压阳极氧化的最佳成膜工艺参数为:10 g/L KOH,5 g/L NaF,5 g/L Na2SiO3,0.5 g/L Na2B4O7, 100 mL/L乙二醇, 75 mL/L丙三醇, 50 mL/L组分G;电流密度 8.9 mA/cm2,氧化时间 30 min.在最佳工艺下所得阳极氧化膜层呈多孔结构,孔洞分布比较均匀,孔径尺寸约为1~2 μm;氧化膜层主要由Al2SiO5、MgF2和MgAl2O4相组成;氧化膜层的耐蚀性明显优于传统含铬DOW17工艺所得氧化膜层的耐蚀性.  相似文献   

11.
直接在7075铝合金表面喷涂油漆,其结合力和防护性能较差。先对7075铝合金作磷化处理再喷涂环氧底漆和聚氨酯面漆。应用X射线衍射仪、Autolab电化学工作站和扫描电子显微镜及加温耐盐水试验对磷化膜的物相组成、成分、表面形貌及其耐蚀性进行了研究;探讨了磷化处理对7075铝合金表面漆膜层结合力及耐腐蚀性能的影响。结果表明:7075铝合金表面磷化动力学过程分为基体阳极溶解、表面形核及膜层增厚3个阶段,主要得到了由Mn Zn2(PO4)2,Zn3(PO4)2,Al PO4等物相组成的多孔磷化膜; 7075铝合金表面的自腐蚀电流由磷化前的40.17μA/cm^2降低到磷化后的7.37μA/cm^2,磷化提高了其耐点蚀性能;磷化处理还极大地提高了漆膜与7075铝合金的附着力和耐腐蚀性。  相似文献   

12.
铝合金表面铈锰化学转化   总被引:1,自引:0,他引:1  
张军军  李文芳  杜军 《材料保护》2012,45(6):39-42,73
以硝酸铈和高锰酸钾为主盐,在6063铝合金表面制备了Ce-Mn化学转化膜。研究了室温下成膜时间、转化液pH值、硝酸铈和高锰酸钾浓度对Ce—Mn转化膜电化学性能的影响,获得了最佳成膜工艺:7g/LCe(NO3)3,2g/LKMnO4,时间9min,pH值2.3。采用极化曲线考察了所得转化膜的耐蚀性,并通过扫描电镜和能谱仪分析了膜的表面微观形貌和组成。结果表明:Ce.Mn转化膜比6063铝合金具有更低的腐蚀电流密度和更大的极化电阻,表现出良好的耐腐蚀性能;Ce-Mn转化膜主要成分是铝、镁、铈、锰和氧。  相似文献   

13.
镁合金磷化处理对化学镀镍层性能的影响   总被引:1,自引:0,他引:1  
为了有利于环保,采用磷化工艺对AZ31B镁合金进行化学镀镍前处理.采用直观法、扫描电子显微镜和阴极极化曲线法对磷化膜及其化学镀镍层进行了分析.结果表明:AZ31B镁合金表面经磷化处理后得到了良好的化学镀镍层;AZ31B镁合金化学镀镍层的耐蚀性随磷化时间的延长先增加后减小,当磷化时间为75 s时,化学镀镍层的腐蚀电势比直...  相似文献   

14.
在低温磷化条件下, 在磷化液中加入Ca 2+并以臭氧作为促进剂, 在A3碳钢表面制备了磷化膜。通过SEM、
XRD、EDS、FT--IR以及腐蚀电化学测试等手段对磷化膜进行表征, 研究了Ca 2+和臭氧对磷化膜的结构和性能的影响。结果表明, 在磷化液中添加Ca 2+所得磷化膜的质量随着Ca 2+浓度的提高而减小, 添加Ca 2+可细化磷化膜的晶粒、提高磷化膜的致密度和耐蚀性能; 溶解在磷化液中的臭氧具有细化磷化膜晶粒和促进晶粒生长的作用, 能大幅提高磷化膜晶粒的形核率和磷化膜的主体形成速度。当磷化液的pH=2.70、Ca 2+浓度为1.8 g/L、臭氧含量为2.50 mg/L时, 磷化膜的质量为5.46 g/m2, 其耐硫酸铜点滴腐蚀时间超过122 s, 在5% NaCl溶液中的腐蚀电流为0.50 μA/cm2。  相似文献   

15.
镁合金磷化工艺及磷化膜性能的研究   总被引:7,自引:0,他引:7  
为了有效提高镁合金表面涂层的防护能力,研制了特定的配方体系对AZ31D镁合金基体进行磷化处理,并进行涂装和性能检测试验.结果表明,该配方体系能制备出表观均匀、细致的磷化膜,金相显示其晶粒均匀.该磷化膜与有机涂层的结合力牢固,用划格法测定膜与环氧涂层甚至与丙烯酸涂层的附着力均能达到1级,而没有磷化膜的金属基体与丙烯酸涂层的附着力仅能达到2级.通过48 h中性盐雾试验表明,有磷化膜的涂层比没有磷化膜的涂层的耐腐蚀性能有所提高.  相似文献   

16.
AZ91D镁合金钒酸盐转化膜的最佳制备工艺   总被引:1,自引:1,他引:0  
过去,对镁合金钒酸盐无铬转化工艺的研究较少.通过正交试验和单因素试验优选了以NH4VO3为主盐的镁合金钒酸盐转化工艺.结果发现,在5 g/L NH4VO3,30 g/L H2PO2-,30 g/L NH4NO3,60 ℃条件下成膜15min可以在AZ91D镁合金表面形成均匀、完整的灰色转化膜;该膜层的微观形貌与铬酸盐转...  相似文献   

17.
采用机械合金化的方法在AZ31镁合金表面涂覆SiO2(Mg)涂层。通过XRD、显微硬度计、扫描电镜等测试手段对表面涂层的微观形貌结构、涂层的显微硬度进行分析,利用电化学工作站对涂覆前后的AZ31镁合金的耐蚀性能进行检测。结果表明:SiO2涂层被成功地涂覆到AZ31镁合金表面;同时,随着球磨时间的增加,涂层的显微硬度呈增加趋势,且随着球料比的增加,显微硬度亦增加,最高达到370.6HV,较基体提高了15.2%;涂层的厚度也呈现先增加后趋于稳定的趋势,但球磨时间过长,涂层内部出现裂纹;当球料比为15:1、球磨时间为15 h时,所制备涂层厚度为148μm,涂层致密且与基体结合较好;所对应的自腐蚀电流密度较基体降低了一个数量级,对应的腐蚀电压提高了6.5%,耐腐蚀性能得到明显改善。   相似文献   

18.
镁合金表面SiO2/有机硅杂化涂层的制备及其耐腐蚀性能   总被引:1,自引:0,他引:1  
为了提高镁合金的耐腐蚀性能,先对其表面进行磷化,再采用溶胶-凝胶法在磷化膜表面制备SiO2/有机硅杂化涂层。采用电化学工作站测试涂层的极化曲线,并用金相显微镜观察了其腐蚀前后的表面形貌。结果表明:磷化膜表面的杂化涂层光滑、黏附性优良,硅溶胶与有机硅树脂形成了有机无机网络连接;磷化膜表面涂覆有机硅树脂和杂化涂层都可以显著提高镁合金的耐腐蚀性能,但后者的效果更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号