首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Magoshi 《Polymer》1977,18(7):643-646
Spherulite formation in silk fibroin films cast from aqueous solution has been studied for crystallization conditions such as drying temperature, drying rate and pretreatment (freezing). Negatively birefringent spherulites in the α-form are observed in films cast between 0° and 40°C, and with a high drying rate at 20°C; positive β-form spherulites appear at higher temperatures up to 80°C and with a low drying rate at 20°C. Positive β-form spherulites are also obtained by freezing fibroin solution at ?2° to ?18°C and then drying at 20°C. It is found that positive β-form spherulites grow at 20°C on the surface of well-oriented β-form silk fibroin filaments (degummed silk) immersed in fibroin solution.  相似文献   

2.
Silk fibroin solution was prepared by dissolving the silk fibroin in triad solvent CaCl2 · CH3CH2OH · H2O. In this article we tested and analyzed the state of frozen silk fibroin solution and fine structure of freeze dried porous silk fibroin materials. The results indicated that the glass transition temperature of frozen silk fibroin solution ranges from −34 to −20°C, and the initial melting temperature of ice in frozen solution is about −8.5°C. When porous silk fibroin materials are prepared by means of freeze drying, if freezing temperature is below −20°C, the structure of silk fibroin is mainly amorphous with a little silk II crystal structure, and if freezing temperature is above −20°C, quite a lot of silk I crystal structure forms. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2185–2191, 2001  相似文献   

3.
Porous silk fibroin materials, with average pore size 10 ∼ 300 μm, pore density 1 ∼ 2000/mm2, and porosity 35 ∼ 70%, were prepared by freeze drying aqueous solution of silk fibroin obtained by dissolving silk fibroin in ternary solvent CaCl2 · CH3CH2OH · H2O. Pore size distribution of such materials mostly accorded with logarithmic normal distribution. It is possible to control the aforementioned structural parameters and the physical properties of moisture permeability, compressibility, strength, elongation, etc., by adjusting freezing temperature and concentration of silk fibroin solution. Above glass transition zone (−34 ∼ −20°C) of silk fibroin, the freezing temperature has more significant effect on the structure and properties of porous silk fibroin materials. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2192–2199, 2001  相似文献   

4.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

5.
In the extraction system of ethyl acetate and NaCl aqueous solution, partition coefficients of polyethylene glycol mono-acrylate (PEGmA) and polyethylene glycol di-acrylate (PEGdA) varied with temperature and concentration of NaCl solution were studied. The best separation condition of PEGmA and PEGdA was determined on that basis. Results of the testing showed that partition coefficients of PEGmA and PEGdA sharply increased with rising concentration of NaCl solution and temperature. Since the incremental degrees of PEGmA and PEGdA were different from each other, the ratio of partition coefficient (K PEGdA/K PEGmA) reached a maximum under the conditions of 20 °C and 5 mol L−1 NaCl. The best separating condition was as follows: PEGdA was extracted out with ethyl acetate by adding 5 mol L−1 NaCl at 20 °C. After three repetitions, the recovery rate of PEGdA reached 99.8%. The water phase was heated to 50 °C and PEGmA was extracted out with ethyl acetate. The recovery rate of PEGmA amounted to 68.8% by three repetitions. After washing and drying, the purity of PEGmA and PEGdA was 99.7 and 98.7% respectively.  相似文献   

6.
Dissolution of Antheraea pernyi silk fiber was carried out in a calcium nitrate solution with various dissolving conditions. The solubility was significantly dependent on the concentration of calcium nitrate, dissolving temperature, and time. The proper conditions of dissolution were found as 7M calcium nitrate, 100°C temperature, and 3 h dissolving time. The aqueous solution of A. pernyi silk fibroin was composed of a mixture of polypeptides with several molecular weights above 14 kDa. FTIR and XRD showed that regenerated A. pernyi silk fibroin was composed of an α-helix as well as a random-coil conformation while silk fiber had a traditional β-sheet structure. The endo–exo transition in the temperature ranges of 228–232°C also supports these conformations of regenerated silk fibroin film. TGA and DTG curves showed that the thermal decomposition of regenerated A. pernyi silk fibroin proceeded by three steps, not dependent on the conformation. The mechanical damping peaks (tan δ) appeared about 227°C with a minor shoulder maximum about 240°C, which were somewhat lower than those of tussah silk fiber. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 750–758, 2001  相似文献   

7.
A series of porous chitin matrices were fabricated by freezing and lyophilization of chitin gels cast from a 5% N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl) solvent system. The porous chitin matrices were found to have uniform pore structure in the micron range. Scanning electron microscopy (SEM) revealed that the pore size of the porous chitin matrices varied according to the freezing method prior to lyophilization. By subjecting the chitin gels to dry-ice/acetone (−38 °C), the final porous chitin matrix gave pore dimensions measuring 200–500 μm with 69% porosity. A smaller pore dimension of 100–200 μm with 61% porosity was produced when the chitin gels were frozen by liquid nitrogen (−196 °C) and 10 μm pores with 54% porosity were produced when the gels were placed in a freezer (−20 °C) for 20 min. In comparison, lower porosity structures of ca. 10% porosity were obtained from both air-dried and critical point dried chitin gels. Furthermore, a low gel concentration (< 0.5%, w/w) also produced porous morphology by vacuum drying without any freezing and lyophilization. The resulting pore properties influenced the water uptake profile of the materials in water. These porous chitin matrices are found to be non-cytotoxic and to hold promise as potential structural scaffolds for cell growth and proliferation in vitro.  相似文献   

8.
Bromide electrolysis was carried out on laboratory-scale cells in the range of 1–1,005 mg [Br] dm−3 using boron-doped diamond (BDD) anodes. These studies were part of fundamental research activities on drinking water electrolysis for disinfection. Synthetic water systems were mostly used in the experiments, which varied the temperature between 5 and 30 °C, the current density between 50 and 700 A m−2, and the rotation rate of the rotating anode between 100 and 500 rpm (laminar regime). Hypobromite and bromate were found as by-products, as expected. Bromite was not detected. Higher bromate levels were formed at higher current density, but no clear relationship was observed between bromate concentration and the rotation rate or temperatures between 5 and 30 °C. Bromate yields higher than 90% were found at higher charge passed. Perbromate was found as a new potential synthesis or disinfection by-product (DBP), but no perbromate was detected at the lowest bromide concentrations and under drinking water conditions. The perbromate yield was about 1%, and somewhat lower when bromate was used as a starting material instead of bromide. At a temperature of 5 °C more perbromate was detected compared with experiments at 20°. Approximately 20 times more perchlorate was formed compared with perbromate formation in the presence of chloride ions of equimolar concentration. State of mechanistic considerations is presented and a mechanism for perbromate formation is proposed. The reaction from bromate to perbromate was found to be limited that is in contrast to the earlier studied chlorate-to-perchlorate conversion. In the measured concentration range, reduction processes at the mixed oxide cathode showed a much higher impact on the resulting concentration for perbromate than for bromate.  相似文献   

9.
This article deals with the characterization of blend films obtained by mixing silk fibroin (SF) and polyacrylamide (PAAm). The DSC curves of SF/PAAm blend films showed overlapping of the main thermal transitions characteristic of the individual polymers. The exothermic peak at 218°C, assigned to the β‐sheet crystallization of silk fibroin, slightly shifted to a lower temperature by blending. The weight‐retention properties (TG) of the blend films were intermediate between those of the two constituents. The TMA response was indicative of a higher thermal stability of the blend films, even at low PAAm content (≤25%), the final breaking occurring at about 300°C (100°C higher than pure SF film). The peak of dynamic loss modulus of silk fibroin at 193°C gradually shifted to lower temperature in the blend films, suggesting an enhancement of the molecular motion of the fibroin chains induced by the presence of PAAm. Changes in the NH stretching region of silk fibroin were detected by FTIR analysis of blend films. These are attributable to disturbance of the hydrogen bond pattern of silk fibroin and formation of new hydrogen bonds with PAAm. The values of strength and elongation at break of blend films slightly improved at 20–25% PAAm content. A sea–island structure was observed by examining the air surface of the blend films by scanning electron microscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1563–1571, 1999  相似文献   

10.
Acid dyes are employed for commercially dyeing silk, which results in ionic bonds between the silk fibroin and the dye. This generally leads to low wet fastness properties for dyed silk fabrics. In this work, three commercial acid dyes with aromatic primary amine structures were selected to dye silk using a Mannich‐type reaction, resulting in improved wet fastness of dyed silk by forming covalent bonds between silk fibroin and dye. The Mannich‐type reactive dyeing was applied to silk fabrics at both 30 and 90°C in trials. Dyeing at 90°C can shorten the dyeing time compared with dyeing at 30°C, even although dye exhaustion and relative fixation at 90°C were a little lower. The dyeing process was optimised when the dyeing temperature was 90°C, dyebath pH 4, dye‐to‐formaldehyde ratio 1:30 and holding dyeing time 60 minutes. The results showed that the dye exhaustion on silk fabrics for the three aromatic primary amine‐containing acid dyes exceeded 94% and their relative fixation was over 80%. Their washing and rubbing fastness reached grade 4 or higher. Hence, the colour fastness properties of dyed silk fabrics using the Mannich‐type reactive dyeing method is superior to the conventional acid dyeing method using the same aromatic primary amine‐containing acid dyes. The Mannich‐type reactive dyeing for silk fabrics at 90°C can be developed into a novel and rapid reactive dyeing method, promising an effective dyeing process with excellent colour fastness.  相似文献   

11.
A new kind of polymeric ionic liquid (PIL) membrane based on guanidinium ionic liquid (IL) with ester and alkyl groups was synthesized. On addition of guanidinium IL, lithium salt, and nano silica in the PIL, a gel PIL electrolyte was prepared. The chemical structure of the PIL and the properties of gel electrolytes were characterized. The ionic conductivity of the gel electrolyte was 5.07 × 10−6 and 1.92 × 10−4 S cm−1 at 30 and 80 °C, respectively. The gel electrolyte had a low glass transition temperature (T g ) under −60 °C and a high decomposition temperature of 310 °C. When the gel polymer electrolyte was used in the Li/LiFePO4 cell, the cell delivered 142 mAh g−1 after 40 cycles at the current rates of 0.1 C and 80 °C.  相似文献   

12.
Nickel coating on the carbon–polythene composite plate was prepared by electrodeposition in a nickel sulfate solution in this work. The morphology and cross-sectional microstructure of the nickel coating were examined by scanning electron microscope (SEM) and optical microscope (OM), respectively. The influence of bath temperature on the nickel deposition rate was investigated experimentally. The adhesion between the coating and the substrate was evaluated by the pull-off test. The corrosion behavior of the coating in an aqueous solution of NaCl was studied by electrochemical methods. The results showed that the nickel electrodeposition rate could reach up to 0.68 μm min−1 on average under conditions of cathodic current density of 20 mA cm−2 and bath temperature of 60 °C. It was confirmed that increasing the bath temperature up to 50 °C had a positive effect on the nickel deposit rate, while an adverse effect was observed beyond 60 °C. The adhesion strength between the nickel coating and the substrate can be more than 2.3 MPa. The corrosion potential of the bright coating in the NaCl solution was more positive than that of the dull coating, and the anodic dissolution rate of the bright coating was also far lower at the same polarization potential compared with the dull coating.  相似文献   

13.
Biodiesel was produced from mustard oil utilizing transesterification with methanol, ethanol, propanol, and butanol to evaluate the characteristics of mustard biodiesel as an additive to regular diesel. Mustard oil was transesterified with alcohol at 6:1 alcohol to oil molar ratio, using KOH as a catalyst at 1 wt%. The maximum ester content achieved by this method was only 66%. Distillation was then used to purify the ester, raising the ester content to 99.8%. Alternatively, mustard oil methyl ester (MME) can be mixed with esters derived from canola oil or soybean oil to achieve an ASTM quality biodiesel. Biodiesel derived from mustard showed great potential as lubricity additive for regular diesel fuel. With an addition of 1% MME, lubricity of diesel fuel was improved by 43.7%. It is also found that methyl ester is the best lubricity additive among all esters (methyl-, ethyl-, propyl-, and butyl-ester). MME can be used at −16 °C without freezing whereas monounsaturated compounds (oleic, eicosenoic, and erucic esters) largely present in esters derived from mustard oil can tolerate −42 to −58 °C. Monounsaturated esters derived from higher alcohols such as butyl alcohol demonstrated a superior low temperature tolerance (−58 °C) as compared to that derived from lower alcohol such as methyl alcohol (−42 °C).  相似文献   

14.
A trimeric quaternary ammonium salt surfactant containing polyoxyethylene chains was synthesized from fatty alcohol polyoxyethylene ether, pentamethyldiethylenetriamine and thionyl chloride by a two-step process. Its chemical structure was characterized, and the surface activity in aqueous solution was studied at different temperatures. The results showed that when the concentration attains the CMC (1.0 mmol/L), the surface tension is 38.9 mN m−1 and the conductivity is 105.3μS cm−1 at 25 °C. These show that the trimeric quaternary ammonium salt surfactant containing polyoxyethylene chains exhibits high surface activity and effectively reduces the surface tension of water.  相似文献   

15.
Organohydrogels (OHGs) are soft materials with antagonistic hydrophilic and hydrophobic domains that have great interest for many different applications. This study presents the preparation of mechanically strong OHGs with shape-memory function by incorporating semicrystalline organo-microgels within the pores of silk fibroin (SF) scaffolds. In the first step, SF cryogels with various pore diameters between 26 ± 8 and 17 ± 4 µm are synthesized by cryogelation of aqueous SF solutions at concentrations between 5 and 20 w/v%. In the second step, the pores of SF scaffolds are filled with an organogel precursor solution containing n-octadecyl acrylate (C18A), acrylic acid, N,N'-methylene(bis)acrylamide, and an initiator. Once the free-radical polymerization took place inside the pores, OHGs containing organo-microgels of various sizes are obtained. The incorporation of the organogel component in the cryogels generates crystalline areas due to the side-by-side packed C18 side chains. OHGs' melting temperature and crystallinity level can be varied from 42 to 54 °C and from 2 to 16%, respectively. The stiffness of OHGs increases from 5.9 ± 0.5 to 18 ± 1 MPa with increasing SF concentration from 5 to 20 w/v%, which is attributed to the decreasing pore size of the cryogels and increasing thickness of the pore walls.  相似文献   

16.
Mulberry silk fibroin is being used as biomaterial for tissue engineering applications. In the present work, comparisons are made between mulberry and eri silk fibroin scaffolds prepared by electrospinning method. The scaffolds are treated with ethanol to improve their dimensional stability, and the physical and chemical properties of the scaffolds are assessed using thermogravimetric analyzer (TGA), differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffractometry. The FTIR spectra confirm the structural change of silk fibroin from α-helical to β-sheet structure when mulberry and eri silk scaffolds are treated with ethanol. The thermal stability of the eri silk scaffold is found to be better than that of mulberry silk. Ethanol-treated eri silk displays higher tensile stress than the ethanol-treated mulberry silk. The hemolysis percentages of eri silk and mulberry silk scaffolds are found to be 1 and 3 %, respectively. While the platelet adhesion on eri silk fibroin scaffold is found to be lower than that of mulberry silk fibroin scaffold, the cell attachment, binding and spreading of L6 fibroblast cells on the eri silk scaffold are better than those on the mulberry silk fibroin, and the cell viability is found to be better on eri silk fibroin scaffold.  相似文献   

17.
A direct ethanol fuel cell (DEFC) of 5 cm2 membrane-electrode area was studied systematically by varying the catalyst loading, ethanol concentration, temperature and different Pt based electro-catalysts (Pt–Ru/C, Pt-black High Surface Area (HSA) and Pt/C). A combination of 2 M ethanol at the anode, pure oxygen at the cathode, 1 mg cm−2 of Pt–Ru/C (40%:20%) as the anode and 1 mg cm−2 of Pt-black as the cathode gave a maximum open circuit voltage (OCV) of 0.815 V, a short circuit current density of 27.90 mA cm−2 and a power density of 10.3 mW cm−2. The optimum temperatures of the anode and cathode were determined as 90 °C and 60 °C, respectively. The power density increased with increase in ethanol concentration and catalyst loading at the anode and cathode. However, the power density decreased slightly beyond 2 M ethanol concentration and 1 mg cm−2 catalyst loading at the anode and cathode. These results were validated using cyclic voltammetry at single electrodes under similar conditions to those of the DEFC.  相似文献   

18.
The electrochemical oxidation of olive mill wastewater (OMW) over a Ti/RuO2 anode was studied by means of cyclic voltammetry and bulk electrolysis and compared with previous results over a Ti/IrO2 anode. Experiments were conducted at 300–1,220 mg L−1 initial chemical oxygen demand (COD) concentrations, 0.05–1.35 V versus SHE and 1.39–1.48 V versus SHE potential windows, 15–50 mA cm−2 current densities, 0–20 mM NaCl, Na2SO4, or FeCl3 concentrations, 80 °C temperature, and acidic conditions. Partial and total oxidation reactions occur with the overall rate being near first-order kinetics with respect to COD. Oxidation at 28 Ah L−1 and 50 mA cm−2 leads to quite high color and phenols removal (86 and 84%, respectively), elimination of ecotoxicity, and a satisfactory COD and total organic carbon reduction (52 and 38%, respectively). Similar performance can be achieved at the same charge (28 Ah L−1) using lower current densities (15 mA cm−2) but in the presence of various salts. For example, COD removal is less than 7% at 28 Ah L−1 in a salt-free sample, while addition of 20 mM NaCl results in 54% COD reduction. Decolorization of OMW using Ti/RuO2 anode seems to be independent of the presence of salts in contrast with Ti/IrO2 where addition of NaCl has a beneficial effect on decolorization.  相似文献   

19.
A copolymer poly(acrylamide-co-3-[N-(2-methacroyloylethyl)-N, N-dimethylammonio]-propane sulfonate) (P(AM/DMAPS)) was synthesized via conventional free-radical polymerization in aqueous media. Its aggregation and disaggregation in aqueous solution were studied as a function of copolymer concentration, ionic strength and ageing time at different temperature by gel permeation chromatography combined with laser light scattering (GPC-MALLS) technique, static and dynamic laser light scattering. GPC-MALLS analysis shows that at low copolymer concentrations (below 0.4 g.L−1), a decrease of both apparent weight-average molecular weight and radius of gyration is observed due to the dissociation of the interchain association. With increasing copolymer concentration, the interchain association is enhanced and both apparent weight-average molecular weight and radius of gyration increase. Correspondingly, the exponent ρ of the radius of gyration/molecular weight (Rg−Mw) relationship shows an increase from 0.29 to 0.6 with increasing copolymer concentration (below 0.4 g.L−1), and then decreases continuously to 0.33 with further increasing copolymer concentration. Dynamic laser light scattering studies reveal that the addition of a small amount of salts (below 0.1 mol.L−1) leads to the disaggregation of the intra- and interchain aggregation. Further addition of salts results in the enhancement of interchain aggregation. The influence of various anions on the aggregation behavior increases in the order Cl < Br < I . The prolonging of the ageing time at 25 °C and 70 °C leads to the disaggregation of the interchain association of P(AM/DMAPS) copolymer in both deionzied water and 0.15 mol.L−1 NaCl solution.  相似文献   

20.
Meicong Wang  Lie Ma  Dan Li  Changyou Gao 《Polymer》2013,54(1):277-283
A porogen-leaching method was applied to intend fabrication of polycaprolactone (PCL) scaffolds. Following with a routine solution infiltration, freeze-drying and porogen-leaching process, the porous scaffolds were normally prepared at an initial solution temperature of 25 °C. However, the PCL anisotropic particles with the smooth and fuzzy surfaces toward the gelatin porogen and the solution, respectively, were unexpectedly obtained when the initial solution temperature was maintained at 37 °C. The freezing temperature was a governing factor for formation of the different PCL products too, while the coarsening time and the PCL concentration within 10–20% had no substantial influence. The PCL anisotropic particles are highly crystallized than the PCL raw materials. To clarify the intrinsic mechanisms, the temperature, cloud point, crystalline ability, and particle size in the solution were quantified. It is demonstrated that the sponges are formed by the traditional liquid–liquid demixing for the 25 °C solution, whereas the anisotropic particles are obtained by the solid–liquid demixing for the 37 °C solution and under the assistance of gelatin particles as nucleation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号