首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用SMIC 0.35μm CMOS工艺实现了一种可以工作在1V电源电压下的CMOS能隙基准源.测试表明,该电路可以工作在1~2.5V电源电压下,输出的基准电压可以稳定在约0.446V.在从室温到100℃的范围内,温度系数不超过3.6×10-5/K.  相似文献   

2.
一种高性能CMOS能隙基准电压源电路设计   总被引:4,自引:0,他引:4  
文章介绍了一种O.35μm工艺制作的能隙基准电压源电路。该电路具有高电压抑制比、低温度系数、抗失配的特点。该电路能被广泛的应用到一些精密集成电路中。  相似文献   

3.
一种高精度CMOS能隙基准电压源   总被引:5,自引:2,他引:5  
设计了一种采用0.6μm CMOS数字工艺的高精度能隙基准电压源。它具有结构简单、性能优异的特点,该电压源主要用于智能电源控制器,其温度系数可达15ppm/℃,输出电压变化率仅为18μV/V。  相似文献   

4.
给出了一种基于0.35μm标准CMOS工艺设计的新型高性能带隙基准电压源的设计方法,该方法采用高增益两极运算放大器结构来降低失调电压.文中给出了采用Cadence软件进行电路设计、电路仿真以及版图设计、版图仿真的具体做法.  相似文献   

5.
一种低压CMOS带隙电压基准源   总被引:1,自引:3,他引:1  
郑浩  叶星宁 《微电子学》2005,35(5):542-544,548
设计了一种与标准CMOS工艺兼容的低压带隙电压基准源,该电路应用二阶曲率补偿,以及两级运算放大器,采用0.8μm BSIM3v3 CMOS工艺,其中,Vthn=0.85 V,Vthp=-0.95 V。用Cadence Spectre软件仿真得出:最小电源电压1.8 V,输出电压590 mV,在0~100℃范围内,温度系数(TC)可达15 ppm/℃,在27℃时输出电压变化率为±2.95 mV/V。  相似文献   

6.
一种高电源抑制比CMOS能隙基准电压源   总被引:6,自引:3,他引:6  
介绍了一个采用0.6μm数字CMOS工艺制作的能隙基准电压源电路,该电路具有小的硅片面积(0.06mm2)、高电源抑制比和较低温度系数。在该电路应用于高精度电路的偏置系统时,还可增加改善输出偏置电流温度系数的电路。  相似文献   

7.
介绍了一种新型能隙基准电压源电路,此电路在smic 0.18 rfms工艺条件下设计,它可以输出大小为616mV的基准电压,只要当电源电压在1.1,2.5V之间,此基准电压的输出浮动不超过2.2mV.  相似文献   

8.
一种输出可调CMOS能隙基准源电路的设计   总被引:1,自引:0,他引:1  
从分析典型的能隙基准电路的一般原理入手,重点讨论了一种输出可调节的CMOS能隙基准电路的设计。通过增加一些辅助电路,提高了电路的电源抑制比。简单介绍了电路中双极晶体管在CMOS工艺中的实现方法。所设计的电路具有输出可调的功能和良好的温度特性。  相似文献   

9.
一种高性能CMOS能隙电压参考源的设计   总被引:2,自引:2,他引:0  
本文介绍了能隙电压源温度曲率校正的概念与原理,设计了一个CMOS工艺的高温校正的电流模式的能隙电压源。本电路采用温度补偿,从而使设计得到了简化。采用2μmp阱CMOS工艺模型模拟分析可以发现该参考源在温度0℃~100℃范围内能够有较好的温度特性。  相似文献   

10.
一种10-ppm/℃低压CMOS带隙电压基准源设计   总被引:10,自引:0,他引:10  
在对传统CMOS带隙电压基准源电路分析和总结的基础上,综合一级温度补偿、电流反馈和电阻二次分压技术,提出了一种10-ppm/℃低压CMOS带隙电压基准源。采用差分放大器作为基准源的负反馈运放,简化了电路的设计,放大器的输出用于产生自身的电流源偏置,提高了电源抑制比(PSRR)。整个电路采用TSMC 0.35μm CMOS工艺实现,采用Hspice进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。  相似文献   

11.
介绍了一个新型电流模带隙基准源,该带隙基准源的输出基准可以设计为任意大于硅材料的带隙电压(1.25V)的电压,避免在应用中使用运算放大器进行基准电压放大. 同时该结构消除了传统电流模带隙基准源的系统失调. 该带隙基准源已通过UMC 0.18μm混合信号工艺验证. 在1.6V电源电压下,该带隙基准源输出145V的基准电压,同时消耗27μA的电流. 在不采用曲率补偿的情况下,输出基准的温度系数在30℃ 到150℃的温度范围内可以达到23ppm/℃. 在电源电压从1.6变化到3V的情况下,带隙基准源的输入电压调整率为2.1mV/V. 该带隙基准源在低频(10Hz)的电源电压抑制比为40dB. 芯片面积(不包括Pads)为0.088mm2.  相似文献   

12.
介绍了一个新型电流模带隙基准源,该带隙基准源的输出基准可以设计为任意大于硅材料的带隙电压(1.25V)的电压,避免在应用中使用运算放大器进行基准电压放大.同时该结构消除了传统电流模带隙基准源的系统失调.该带隙基准源已通过UMC 0.18μm混合信号工艺验证.在1.6V电源电压下,该带隙基准源输出1.45V的基准电压,同时消耗27μA的电流.在不采用曲率补偿的情况下,输出基准的温度系数在30℃到150℃的温度范围内可以达到23ppm/℃.在电源电压从1.6变化到3V的情况下,带隙基准源的输入电压调整率为2.1mV/V.该带隙基准源在低频(10Hz)的电源电压抑制比为40dB.芯片面积(不包括Pads)为0.088mm2.  相似文献   

13.
在分析传统带隙基准电路的基础上,提出一种采用电流模式结构的低电压带隙基准电路。该电路能够输出200mV~1.25V的宽范围的电压,并使用了与电源无关偏置以及带负反馈网络的二级运放,提高了输出电压的精度。采用CMOS0.35μm工艺实现时,工作电压可在1.1V~1.5V。Hspice仿真结果表明,工作电压为1.5V时,电路的有效温度系数为14ppm/℃。  相似文献   

14.
提出了一种正负温度系数电流产生电路,使用分段线性温度补偿技术用于传统的电流模式基准电路中,改善CMOS带隙基准电路在宽温度范围内的温度漂移.采用0.18μm CMOS混合信号工艺,对该电路进行了设计.在1.8V的电源电压条件下,基准输出电压为0.801 V,温度系数在-40℃-125℃范围内可达到2.7ppm/℃,电源电压从1.5V变化到3.3V的情况下,带隙基准的输入电压调整率为1.2mV/V.  相似文献   

15.
提出一种输出低于1V的、无电阻高电源抑制比的CMOS带隙基准源(BGR).该电路适用于片上电源转换器.用HJTC0.18μm CMOS工艺设计并流片实现了该带隙基准源,芯片面积(不包括pad和静电保护电路)为0.031mm2.测试结果表明,采用前调制器结构,带隙基准源电路的输出在100Hz与lkHz处分别获得了-70与-62dB的高电源抑制比.电路输出一个0.5582V的稳定参考电压,当温度在0~85℃范围内变化时,输出电压的变化仅为1.5mV.电源电压VDD在2.4~4V范围内变化时,带隙基准输出电压的变化不超过2mV.  相似文献   

16.
提出一种输出低于1V的、无电阻高电源抑制比的CMOS带隙基准源(BGR).该电路适用于片上电源转换器.用HJTC0.18μm CMOS工艺设计并流片实现了该带隙基准源,芯片面积(不包括pad和静电保护电路)为0.031mm2.测试结果表明,采用前调制器结构,带隙基准源电路的输出在100Hz与lkHz处分别获得了-70与-62dB的高电源抑制比.电路输出一个0.5582V的稳定参考电压,当温度在0~85℃范围内变化时,输出电压的变化仅为1.5mV.电源电压VDD在2.4~4V范围内变化时,带隙基准输出电压的变化不超过2mV.  相似文献   

17.
低压CMOS带隙电压基准源设计   总被引:2,自引:0,他引:2  
在对传统典型CMOS带隙电压基准源电路分析和总结的基础上,综合一级温度补偿、电流反馈技术,提出了一种1-ppm/°C低压CMOS带隙电压基准源。采用差分放大器作为基准源的负反馈运放,简化了电路设计。放大器输出用作电路中PMOS电流源偏置,提高了电源抑制比(PSRR)。整个电路采用TSMC0.35μmCMOS工艺实现,采用HSPICE进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。  相似文献   

18.
传统设计中平衡温度时的带隙基准电压值是与工艺相关联的定值.主要基于通用的带隙技术讨论在CMOS工艺中基准产生的设计,在对基准产生原理与传统电路结构分析的基础上,设计出一种高PSRR输出可调带隙基准电压源.电路综合温度补偿、电流反馈和电阻分压技术,采用CSMC 0.5 tim CMOS混合信号工艺实现,并用Cadence的Spectre进行了仿真优化.仿真结果表明,带隙基准电压源在-15~80℃范围内输出为603.5 mV时的温度系数为6.84 × 10-6/℃,在1.8~5 V电路均可正常工作.流片后的测试结果验证了该方法的可行性,基准电压中心值可宽范围调整,各项性能参数满足设计要求.  相似文献   

19.
一种用于A/D转换器的低电压CMOS带隙电压基准源   总被引:1,自引:1,他引:1  
设计了一种在1V电压下正常工作的用于A/D转换器的低功耗高精度的CMOS带隙电压基准.电路主要包括了一个带隙基准和一个运放电路,而且软启动电路不消耗静态电流.电路采用0.18μm CMOS工艺设计.仿真结果显示,温度从-40~125°C,温度系数约为1.93ppm/°C,同时电源抑制比在10kHz时为38.18dB.电源电压从0.9V到3.4V变化时,输出电压波动保持在0.17%以内;电路消耗总电流为5.18μA.  相似文献   

20.
基于经典Wildar带隙基准结构,通过单级高增益低失调运放及其闭环负反馈设计,将电压求和模式输出与电阻负载驱动紧密结合,同时增加简单的单管并联高阶补偿结构,实现了一种具有较大负载驱动能力的高精度多值低压基准输出,解决了经典基准电路在补偿精度与PSRR方面的局限性.CSMC 0.5μm CMOS工艺仿真结果表明,在-40~125℃,一阶补偿的温度系数为6×10~(-6)/℃,输出电阻支路采用并联MOS管的高阶补偿后,温度系数下降到1.27×10~(-6)/℃,低频下电源抑制比达到-57 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号