首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于矩阵压缩的Apriori算法改进的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
Apriori算法是利用关联规则进行数据挖掘的一种经典算法,但其具有产生大量候选项集和多次扫描数据库的缺点。鉴于此,提出了一种基于压缩矩阵的Apriori改进算法,通过扫描一次数据库,将其转化为布尔事务矩阵,按照相关性质对事务矩阵进行压缩,以减少算法的运算量。实验结果表明,改进算法在性能上得到了明显提高。  相似文献   

2.
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有趣的关联。Apriori算法是关联规则挖掘中的经典算法。然而Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。提出了一种新的Apriori的改进算法,该算法在生成k(k>1)项频繁集时,不需要重新扫描数据库,只是在生成1项频集时,才需要扫描事务数据库,有效地减少了对事务数据库的读操作,在时间复杂度上较经典的Apriori算法有更加优越的性能。  相似文献   

3.
针对Apriori算法中I/O负载大和减枝过程中生成大量中间结果两个性能瓶颈问题,提出了一种事务矩阵和项集矩阵的Apriori改进算法.算法的基本思想是:扫描数据库生成事务矩阵,通过事务矩阵和项集矩阵之间的运算代替Apriori算法中的数据库扫描得到频繁项集,减少I/O负载,加快候选项集的验证速度;通过对频繁项集矩阵的操作,减少生成候选频繁项集的数目,避免Apriori算法减枝步骤中对候选项集的分解和判断.通过仿真验证了改进算法的有效性.  相似文献   

4.
针对关联规则中Apriori算法存在的缺点,提出了一种基于布尔矩阵约简的Apriori改进算法。在该算法中,将事务数据库转换为布尔矩阵,并在矩阵最后增加1行2列,用来记录相同事务的个数和矩阵行与列中"1"的个数。将矩阵各列元素按支持数升序排列,使得算法在压缩过程中减少了扫描矩阵各列的次数,缩短了算法的运行时间。另外,为了提高算法的存储空间利用率,增加了删除非频繁项集的操作。实验结果和性能分析表明,相比现有的算法,改进后的算法具有更好的性能,能够有效地提高算法执行效率。  相似文献   

5.
吴文妹  陈国龙 《福建电脑》2005,(4):17-17,14
本文利用频繁项集的一个性质,对Apriori算法中的生成候选项集这一步进行改进,大大减少不必要的计算,从而加快候选项集生成的速度。  相似文献   

6.
 Apriori算法在搜索频繁项集过程中,通常需要对数据库进行多次的重复扫描和产生大量无用的候选集,针对此问题提出一种基于矩阵约简的Apriori改进算法。该算法只需扫描一次数据库,将数据库信息转换成布尔矩阵,根据频繁k-项集的性质推出的结论来约简数据结构,有效地降低无效候选项集的生成规模。通过对已有算法的对比,验证该算法能有效地提高挖掘频繁项集的效  相似文献   

7.
纪怀猛 《计算机工程》2013,(11):183-186
捕要:Apriori算法在关联规则挖掘过程中需要多次扫描事务数据库,产生大量候选项目集,导致计算量过大。为解决该问题,提出一种基于频繁2项集支持矩阵的Apriori改进算法,通过分析频繁k+1项集的生成机制,将支持矩阵与频繁2项集矩阵相结合实现快速剪枝,并大幅减少频繁k项集验证的计算量。实验结果表明,与Apriori算法和ABTM算法相比,改进算法明显提高了频繁项集的挖掘效率。  相似文献   

8.
关联规则挖掘是数据挖掘领域中的一个非常重要的研究内容,其主要目标就是发现数据库中一组对象之间某种关联。频繁项集挖掘是关联规则挖掘的关键步骤,它在很大程度上决定了关联规则挖掘的效率。介绍了Apriori算法及其算法改进。该改进算法对剪枝步进行了优化,提高了连接效率,并且不断减小数据库的规模,去掉无效事务,减少了每次扫描数据库所花费的时间,提高了算法效率。经过试验论证,性能比原有算法提高,具有一定的实用性。  相似文献   

9.
一种基于压缩矩阵的Apriori算法改进研究   总被引:1,自引:0,他引:1  
罗丹  李陶深 《计算机科学》2013,40(12):75-80
针对已有基于矩阵的Apriori算法存在的问题,提出了一种改进的基于压缩矩阵的Apriori算法。算法进行了以下方面的改进:增加了两个数组,分别用于记录矩阵行与列中1的个数,使得算法在压缩矩阵时减少了扫描矩阵的次数;在压缩矩阵中,通过增加删除不能连接的项集和非频繁的项集的操作,使得矩阵压缩得更小,提高了空间效率;改变了删除事务列的条件和算法结束的条件,以减少挖掘结果的误差和算法循环的次数。算法性能分析和实验分析证明,改进后的算法能有效地挖掘频繁项集,并且比现有的算法具有更高的计算效率。  相似文献   

10.
挖掘关联规则是数据挖掘中一个重要的课题,产生频繁项集是其中的一个关键步骤.文章提出了一种基于矩阵压缩的Apriori优化算法,并将该算法与Apriori算法进行了比较.实验表明与Apriori算法相比,新算法的效率较好.  相似文献   

11.
基于矩阵的Apriori算法改进   总被引:21,自引:0,他引:21       下载免费PDF全文
李超  余昭平 《计算机工程》2006,32(23):68-69
对基于矩阵的Apriori算法进行了改进,同时改进了发现关联规则算法,将Apriori算法的剪枝与矩阵联系起来,可以大大减少扫描数据库的次数,从而提高算法的效率,在生成关联规则中,利用了概率论的基本性质也大大减少了计算量。并通过实例说明它是一种有效的关联规则挖掘方法。  相似文献   

12.
基于频繁项目对支持矩阵的Apriori优化算法   总被引:4,自引:0,他引:4  
提出了一种基于频繁项目对支持矩阵的Apriori改进算法,并在一个Web log的真实数据集上进行了试验,与现有算法的比较表明,该算法比现有算法具有更好的性能.  相似文献   

13.
14.
基于矩阵的Apriori算法的优化   总被引:1,自引:0,他引:1  
在数据挖掘中关联规则挖掘是很重要的一个方面,而Apriori算法是进行关联规则挖掘的经典算法。本文首先分析了经典Apriori算法,然后利用矩阵的思想对其改进,并利用事务压缩的思想对矩阵进行压缩。改进后的算法明显提高了Apriori算法的效率。  相似文献   

15.
一种Apriori算法的改进   总被引:2,自引:0,他引:2  
Apriori算法在处理关联规则分析时,当数据立方体数据稠密时,实现迭代性质将需要非常复杂的数据结构。针对上述问题,本文提出了一种改进的Apriori-ni算法,该算法没有用迭代性质来剪枝,即不基于迭代属性的算法。对Apriori算法和Apriori-ni算法进行了分析和比较,实验结果表明,当项目集很多时,Apriori-ni算法能节约计算开销,从而提高算法的效率。  相似文献   

16.
一种改进的Apriori算法   总被引:1,自引:0,他引:1  
关联规则挖掘是数据挖掘研究的重要内容之一。通过对关联规则挖掘算法的详细分析,提出了一种基于有向关联图的频繁项集挖掘算法,该方法仅需扫描数据库一次,避免了Apriori算法繁琐的连接和删除步骤,从而提高了搜索速度。  相似文献   

17.
一种基于Apriori的改进算法   总被引:15,自引:1,他引:15  
关联规则采掘是数据采掘中重要的研究课题。该文对关联规则采掘中的Apriori算法进行了深入研究。作者探讨了Apriori算法,指出了该算法的某些不足,提出了一种改进算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号