首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fulvic acid (FA) from a tropical Australian billabong (lagoon) was isolated with XAD-8 resin and characterized using size exclusion chromatography, solid state cross-polarization magic angle spinning, 13C nuclear magnetic resonance spectroscopy, elemental analysis, and potentiometric acid-base titration. Physicochemical characteristics of the billabong FA were comparable with those of the Suwannee River Fulvic Acid (SRFA) standard. The greater negative charge density of the billabong FA suggested it contained protons that were more weakly bound than those of SRFA, with the potential for billabong water to complex less metal contaminants, such as uranium (U). This may subsequently influence the toxicity of metal contaminants to resident freshwater organisms. The complexation of U with dissolved organic carbon (DOC) (10 mg L(-1)) in billabong water was calculated using the HARPHRQ geochemical speciation model and also measured using flow field-flow fractionation combined with inductively coupled plasma mass-spectroscopy. Agreement between both methods was very good (within 4% as U-DOC). The results suggest that in billabong water at pH 6.0, containing an average DOC of 10 mg L(-1) and a U concentration of 90 μg L(-1), around 10% of U is complexed with DOC.  相似文献   

2.
Current water quality criteria (WQC) regulations on copper toxicity to biota are still based on total dissolved (<0.4 μm membrane filter) copper concentrations with a hardness modification for freshwaters. There are however ongoing efforts to incorporate metal speciation in WQC and toxicity regulations (such as the biotic ligand model-BLM) for copper and other metals. Here, we show that copper accumulation and growth inhibition of the Baltic macroalga Ceramium tenuicorne exposed to copper in artificial seawater at typical coastal and estuarine DOC concentrations (similar to 2-4 mg/L-C as fulvic acid) are better correlated to weakly complexed and total dissolved copper concentrations rather than the free copper concentration [Cu2+]. Our results using a combination of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) measurements and model calculations (using visual MINTEQ incorporating the Stockholm Humic Model) show that copper accumulation in C. tenuicorne only correlates linearly well to [Cu2+] at relatively high [Cu2+] and in the absence of fulvic acid. Thus the FIAM fails to describe copper accumulation in C. tenuicorne at copper and DOC concentrations typical of most marine waters. These results seem to indicate that at ambient total dissolved copper concentration in coastal and estuarine waters, C. tenuicorne might be able to access a sizable fraction of organically complexed copper when free copper concentration to the cell membrane is diffusion limited.  相似文献   

3.
Kinetics and mechanisms of As(III) oxidation by free available chlorine (FAC-the sum of HOCl and OCl-), ozone (O3), and monochloramine (NH2Cl) were investigated in buffered reagent solutions. Each reaction was found to be first order in oxidant and in As(III), with 1:1 stoichiometry. FAC-As(III) and O3-As(III) reactions were extremely fast, with pH-dependent, apparent second-order rate constants, k'app, of 2.6 (+/- 0.1) x 10(5) M(-1) s(-1) and 1.5 (+/- 0.1) x 10(6) M(-1) s(-1) at pH 7, whereas the NH2Cl-As(III) reaction was relatively slow (k'app = 4.3 (+/- 1.7) x 10(-1) M(-1) s(-1) at pH 7). Experiments conducted in real water samples spiked with 50 microg/L As(III) (6.7 x 10(-7) M) showed that a 0.1 mg/L Cl2 (1.4 x 10-6 M) dose as FAC was sufficient to achieve depletion of As(III) to <1 microg/L As(III) within 10 s of oxidant addition to waters containing negligible NH3 concentrations and DOC concentrations <2 mg-C/L. Even in a water containing 1 mg-N/L (7.1 x 10(-5) M) as NH3, >75% As(III) oxidation could be achieved within 10 s of dosing 1-2 mg/L Cl2 (1.4-2.8 x 10(-5) M) as FAC. As(III) residuals remaining in NH3-containing waters 10 s after dosing FAC were slowly oxidized (t1/2 > or = 4 h) in the presence of NH2Cl formed by the FAC-NH3 reaction. Ozonation was sufficient to yield >99% depletion of 50 microg/L As(III) within 10 s of dosing 0.25 mg/L O3 (5.2 x 10(-6) M) to real waters containing <2 mg-C/L of DOC, while 0.8 mg/L O3 (1.7 x 10(-5) M) was sufficientfor a water containing 5.4 mg-C/L of DOC. NH3 had negligible effect on the efficiency of As(III) oxidation by O3, due to the slow kinetics of the O3-NH3 reaction at circumneutral pH. Time-resolved measurements of As(III) loss during chlorination and ozonation of real waters were accurately modeled using the rate constants determined in this investigation.  相似文献   

4.
In this study, we examine the role of the hydroxyl (OH*) radical as a mechanism for the photodecomposition of chromophoric dissolved organic matter (CDOM) in sunlit surface waters. Using gamma-radiolysis of water, OH* was generated in solutions of standard humic substances in quantities comparable to those produced on time scales of days in sunlit surface waters. The second-order rate coefficients of OH* reaction with Suwannee River fulvic (SRFA; 2.7 x 10(4) s(-1) (mg of C/L)(-1)) and humic acids (SRHA; 1.9 x 10(4) s(-1) (mg of C/L)(-1)) are comparable to those observed for DOM in natural water samples and DOM isolates from other sources but decrease slightly with increasing OH* doses. OH* reactions with humic substances produced dissolved inorganic carbon (DIC) with a high efficiency of approximately 0.3 mol of CO2/mol of OH*. This efficiency stayed approximately constant from early phases of oxidation until complete mineralization of the DOM. Production rates of low molecular weight (LMW) acids including acetic, formic, malonic, and oxalic acids by reaction of SRFA and SRHA with OH* were measured using HPLC. Ratios of production rates of these acids to rates of DIC production for SRHA and for SRFA were similar to those observed upon photolysis of natural water samples. Bioassays indicated that OH* reactions with humic substances do not result in measurable formation of bioavailable carbon substrates other than the LMW acids. Bleaching of humic chromophores by OH* was relatively slow. Our results indicate that OH* reactions with humic substances are not likely to contribute significantly to observed rates of DOM photomineralization and LMW acid production in sunlit waters. They are also not likely to be a significant mechanism of photobleaching except in waters with very high OH* photoformation rates.  相似文献   

5.
The selective toxicity of H2O2 was investigated to develop a potential tool for limiting cyanobacterial blooms and to better understand the occurrence of cyanobacteria and other phytoplankton species in relation to reactive oxygen species in surface waters. The cyanobacterium Microcystis aeruginosa, the green alga Pseudokirchneriella subcapitata, and the diatom Navicula seminulum were tested under pulse exposure to H202 in the dark and at various irradiances. H2O2 was decomposed at rates depending on algal species and was proportional to irradiance. The cyanobacterium was affected by H202 at 10 times lower concentrations than green alga and diatom, and a strong light-dependent toxicity enhanced the difference. The inhibition was measured as photosynthetic yield (Fv/Fm) in pulse amplitude modulated fluorometry, and was confirmed by changes in minimal fluorescence (F0) and photosynthetic oxygen evolution. Single doses of 0.27 mg L(-1) of H202 caused 50% inhibition to M. aeruginosa at high irradiance. Such concentration overlaps with the highest levels of 0.34 mg L(-1) observed in natural waters, suggesting that H202 may act as a limiting factor for cyanobacterial growth.  相似文献   

6.
Dissolved copper is an important nonpoint source pollutant in aquatic ecosystems worldwide. Copper is neurotoxic to fish and is specifically known to interfere with the normal function of the peripheral olfactory nervous system. However,the influence of water chemistry on the bioavailability and toxicity of copper to olfactory sensory neurons is not well understood. Here we used electrophysiological recordings from the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch) to investigate the impacts of copper in freshwaters with different chemical properties. In low ionic strength artificial fresh water, a short-term (30 min) exposure to 20 microg/L dissolved copper reduced the olfactory response to a natural odorant (10(-5) M L-serine) by 82%. Increasing water hardness (0.2-1.6 mM Ca) or alkalinity (0.2-3.2 mM HCO3-) only slightly diminished the inhibitory effects of copper. Moreover, the loss of olfactory function was not affected by a change in pH from 8.6 to 7.6. By contrast, olfactory capacity was partially restored by increasing dissolved organic carbon (DOC; 0.1-6.0 mg/L). Given the range of natural water quality conditions in the western United States, water hardness and alkalinity are unlikelyto protect threatened or endangered salmon from the sensory neurotoxicity of copper. However, the olfactory toxicity of copper may be partially reduced in surface waters that have a high DOC content.  相似文献   

7.
High levels of dissolved organic carbon (DOC) and bromide (Br) in the Sacramento and San Joaquin River waterways are of concern because DOC and Br are organic and inorganic precursors, respectively, of carcinogenic and mutagenic disinfection byproducts (DBPs). The Sacramento and San Joaquin Rivers are the two major rivers supplying water to the San Francisco Bay Delta, but sources and loads of DBP precursors into the Delta are still uncertain. The major objectives of this study were to evaluate both the quantity (DOC and Br fluxes) and the quality (reactivity in forming DBPs) of DBP precursors from the Sacramento and San Joaquin watersheds. Water samples were collected every 2 weeks at up to 35 locations along the Sacramento and San Joaquin Rivers and selected tributaries and analyzed for DOC (4 years), Br (1 year), and ultraviolet absorbance at 254 nm (1 year). Selected water samples were also tested for THM formation potential. Estimated fluxes for the Sacramento River were 39 000 +/- 12 000 Mg DOC year(-1) and 59 Mg of Br year(-1) as compared to 9000 +/- 5000 Mg of DOC year(-1) and 1302 Mg of Br year(-1) for the San Joaquin River. The THM formation potential was higher in the San Joaquin River (441 +/- 49 microg L(-1)) than the Sacramento River (176 +/- 20 microg L(-1)) because of higher concentrations of both organic (DOC = 3.62 +/- 0.14 vs 1.92 +/- 0.09 mg L(-1)) and inorganic DBP (Br = 0.80 +/- 0.07 vs < 0.03 +/- 0.01 mg L(-1)) precursors. The Sacramento River's greater DOC load despite lower DOC concentrations is due to its discharge being about 5 times greater than the San Joaquin River (50 x 10(9) vs 10 x 10(9) L day(-1)). The DOC concentration was significantly correlated with several land-cover types, including agriculture; however, no relationship was found between DOC quality and land-cover at the watershed scale.  相似文献   

8.
Although most of forested watersheds in temperate and boreal regions are snow-covered for a substantial portion of the year, responses of biogeochemical processes under the snow pack to climatic fluctuations are poorly understood. We investigated responses of dissolved organic carbon (DOC) and surface water chemistry in stream and lake discharge waters draining the Arbutus Lake Watershed in the Adirondacks of New York State to climatic fluctuations during the snow-covered months from December through April. Interannual variability in stream discharge corresponded to changes in air temperature and snow pack depth across the winter months. Concentrations of DOC in stream water draining a subcatchment showed immediate positive responses to rising temperatures and subsequent increases in runoff during most snowmelt events. Increases in DOC concentrations usually coincided with decreases in pH and increases in total aluminum (Al) concentrations, while the correlations between concentrations of DOC and SO4(2-) or base cations were negative. Although changes in air temperature, snow pack depth, and runoff were all significantly correlated with stream water concentrations of major solutes, stepwise linear regression found that runoff was the best predictor of solute concentrations. Results of stepwise linear regression with long-term monthly monitoring data collected at the lake outlet showed weaker but still consistent climatic effects on interannual variations in concentrations of DOC and other solutes. Over the 17 winter periods from December 1983 through April 2000, changes in seasonal average concentrations of DOC, H+, and Al in lake discharge generally corresponded to interannual variations in temperature, precipitation, and runoff, while SO4(2-) and base cations displayed an opposite trend. The results suggest that snowmelt-mediated DOC responses to temperature fluctuations during the winter months might offset increases in the surface water pH caused by decreasing acidic deposition and pose a potential hazard of Al toxicity in surface waters.  相似文献   

9.
In coastal areas, strong complexation of copper generally reduces its toxicity; our ability to monitor and regulate copper as a toxin therefore depends on our understanding of the sources and sinks of the copper-binding ligands. Terrestrial humic substances (HS) are well-recognized contributors to weak ligand concentrations in aquatic systems. In this work, we show that HS are likely contributors to both stronger and weaker ligand classes controlling copper speciation in coastal areas receiving typical inputs of terrestrial organic matter. We used competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV), with the added ligands benzoylacetone and salicylaldoxime, to examine copper binding by terrestrial HS in a seawater matrix, at HS and copper concentrations typical of coastal waters. Copper titration data of 1 mg/L Suwannee River humic acid (SRHA) in seawater could be modeled using conditional stability constants of 10(12.0) and 10(10.0) and total ligand concentrations of 10.4 and 199 nM for a stronger and weaker ligand, respectively. Similar results were obtained for Suwannee River fulvic acid (SRFA). Strong copper binding by SRFA in seawater was weaker than previously reported for a freshwater at similar pH, possibly indicating effects of Ca and Mg competition or ionic strength. Nevertheless,the concentrations and binding strengths of copper ligands we observed are comparable to the range reported in previous coastal speciation studies. In addition, we show that the weaker copper ligands cause internal calibration techniques to significantly underestimate the sensitivity of ACSV in the presence of HS concentrations typical of coastal waters. To address this issue, we demonstrate the use of "overload titrations", using a high enough concentration of added ligand to outcompete all natural ligands as an alternative calibration technique for analysis of coastal samples.  相似文献   

10.
The roles of particles and natural organic matter (NOM) in determining coagulant (alum) doses in potable water treatment were investigated at two pH conditions (6 and 7). The concentrations of NOM and colloidal silica particles in raw water were systematically varied separately and in combination, and the impacts of these two classes of contaminants on the minimum effective alum doses were investigated using observations of turbidity and dissolved organic carbon (DOC) in laboratory jar tests. At both pHs, coagulant requirements for the removal of these contaminants by sedimentation and filtration were dominated by the DOC concentration in the raw water. The presence of low NOM concentrations (0.75-1.5 mg of C/L) decreased the minimum effective alum dose dramatically for waters low in silica particles, possibly by promoting the precipitation of aluminum hydroxide and/or Al-NOM solids, whose removal would otherwise be limited by low collision opportunities. Strong stoichiometric relationships were observed between DOC and coagulant demand at both pHs regardless of silica particle concentration. Silica contributed to coagulant demand only at very high particle concentrations.  相似文献   

11.
Sediment toxicity from hydrophobic organic compounds (HOCs) is complicated by chemical partitioning among multiple phases and sediment-specific bioavailability. In this study, we used three hydrophobic pyrethroid insecticides as test compounds and derived 10-d median lethal concentrations (LC50s) for Chironomus tentans in three different sediments. The LC50s were expressed using HOC concentrations on a bulk sediment basis (C(S)), organic carbon (OC)-normalized sediment basis (C(S-OC)), porewater basis (C(PW)), dissolved organic carbon (DOC)-normalized porewater basis (C(PW-DOC)), and freely dissolved porewater basis (C(free)). The bulk phase C(S) and C(PW) yielded highly variable LC50s across sediment types, whereas the use of normalized concentrations C(S-OC) and C(PW-DOC) generally reduced variability due to sediment type but not that due to aging. In contrast, LC50s based on C(free) were essentially independent of sediment conditions. The sediment pore water samples contained approximately 20-90 mg L(-1) DOC, and the C(free) expressed as a percentage of the total bulk pore water concentration ranged from 9 to 28% for fenpropathrin (mean = 19%), 8 to 18% for bifenthrin (mean = 13%), and 3 to 8% for cyfluthrin (mean = 6%) across the different sediments. These results indicate thatthe use of C(free) reduces uncertainties caused by sediment variables such as OC properties and aging effects.  相似文献   

12.
A novel bioassaythat uses visual inspection of reproduction of the aquatic green macroalga Ulva has been developed for testing toxic chemicals. The method employs a technique to quantify percentage reproduction based on thallus color change during the progression of reproduction. The validity of visual inspection as a reliable method was supported by a high test score (80.4) from a test of the ability of 97 first year university students with no biology background to evaluate reproduction by visual observation after 30 min training. The sensitivity of the method was assessed using a reference toxicant (sodium dodecyl sulfate; SDS; EC50 = 7.1 mg x L(-1)), heavy metals Cu (0.063 mg x L(-1)), Cd (0.217 mg x L(-1, Pb (0.840 mg x L(-1)), Zn (0.966 mg x L(-1)), formalin (1.458 mg x L(-1)), diesel fuel (3.7 mL x L(-1)), and is shown to be similar or better than more established aquatic toxicity bioassays. Toxicity data obtained by the Ulva bioassay for elutriates of sludge collected from nine different locations were directly compared with the commercially available Microtox test. Ulva reproduction was significantly inhibited in all elutriates with the greatest and least toxic effects, estimated by toxicity units (TU) observed in elutriates from industrial waste (13.1 TU) and a filtration bed (4.8 TU), whereas values ranging from 1 to 4.5 TU were obtained from the Microtox test, confirming that the Ulva bioassay is more sensitive. Correlation analyses for EC50 data versus the concentrations of toxicants in the sludge indicated a significant relationship between toxicity and four heavy meals (Cd, Cu, Pb, Zn) for the Ulva bioassay but no such correlation was detected by the Microtox test. The new bioassay method is simple to use, easy to interpret, economical, and eco-relevant so would be a valuable addition to aquatic toxicity testing protocols for a wide range of toxicants. Moreover, since Ulva has a wide geographical distribution and species have similar reproductive processes, the test method has worldwide application.  相似文献   

13.
Aerobic wetlands are increasingly being included in mine water treatment systems which need to achieve low residual iron concentrations (<0.5 mg L(-1)) in final discharges. Traditionally the macrophyte components of such systems have been thought to be insignificant sinks for major contaminants such as iron. However, we report high rates of plant uptake of iron where the latter is present at relatively low concentrations, suggesting that macrophytes may well be critical to achieving low residual iron concentrations in final effluents from such systems. The wetland macrophyte Phragmites australis was grown in waters with a range of iron concentrations (0-50 mg L(-1)). At an Fe supply of 1 mg L(-1) almost 100% of the Fe was taken up into plant tissues. The majority of iron was stored in and around the roots of the plants, which helps allay fears of possible release of contaminants during seasonal die-back of emergent shoots and leaves. The 1 mg L(-1) threshold also proved to be important in terms of plant growth, with significant inhibition (evident in root length and in dry weights of shoots and roots) in plants grown in waters with Fe above this concentration. No direct causal relationship between iron content in aerial tissues and growth inhibition was found, which strongly suggests that iron toxicity cannot explain these results. These results have implications for the design of mine water treatment wetlands, particularly with regard to initial establishment of vegetation and achieving sufficient Fe removal in "polishing" applications (i.e. where it is intended to remove the last few mg L(-1) of Fe).  相似文献   

14.
The U.S. Environmental Protection Agency (EPA) narcosis model for benthic organisms in polycyclic aromatic hydrocarbon (PAH) contaminated sediments requires the measurement of 18 parent PAHs and 16 groups of alkyl PAHs ("34" PAHs) in pore water with desired detection limits as low as nanograms per liter. Solid-phase microextraction (SPME) with gas chromatographic/mass spectrometric (GC/ MS) analysis can achieve such detection limits in small water samples, which greatly reduces the quantity of sediment pore water that has to be collected, shipped, stored, and prepared for analysis. Four sediments that ranged from urban background levels (50 mg/kg total "34" PAHs) to highly contaminated (10 000 mg/kg total PAHs) were used to develop SPME methodology for the "34" PAH determinations with only 1.5 mL of pore water per analysis. Pore water was obtained by centrifuging the wet sediment, and alum flocculation was used to remove colloids. Quantitative calibration was simplified by adding 15 two- to six-ring perdeuterated PAHs as internal standards to the water calibration standards and the pore water samples. Response factors for SPME followed by GC/MS were measured for 22 alkyl PAHs compared to their parent PAHs and used to calibrate for the 18 groups of alkyl PAHs. Dissolved organic carbon (DOC) ranging from 4 to 27 mg/L had no measurable effect on the freely dissolved concentrations of two- and three-ring PAHs. In contrast, 5-80% of the total dissolved four- to six-ring PAHs were associated with the DOC rather than being freely dissolved, corresponding to DOC/water partitioning coefficients (K(DOC)) with log K(DOC) values ranging from 4.1 (for fluoranthene) to 5.6 (for benzo[ghi]perylene). However, DOC-associated versus freely dissolved PAHs had no significant effect on the total "34" PAH concentrations or the sum of the "toxic units" (calculated bythe EPA protocol), since virtually all (86-99%) of the dissolved PAH concentrations and toxic units were contributed by two- and three-ring PAHs.  相似文献   

15.
Water chemistry is generally thought to influence metal toxicity via affecting metal bioavailability and bioaccumulation, but its effects on tissue residue-based toxicity are poorly known. We conducted toxicity tests in parallel with uptake kinetics experiments of cadmium (Cd) in waters of different calcium (Ca) concentrations and pH levels using acclimated Daphnia magna as a model organism. Both the acute toxicity and uptake of Cd were reduced by higher Ca concentration and lower pH. Strikingly constant median effective influx rates (EJ(50), 1.3-1.6 μg g(-1) h(-1)) of Cd were observed when the concentration of Ca varied from 0.5 to 200 mg L(-1), indicating that acclimation to different Ca levels did not affect the tissue residue-based toxicity. The EJ(50) values increased consistently with decreasing pH level, showing that acclimation to acidic water decreased the tissue residue-based toxicity. With the use of calcium uptake inhibitors, we demonstrated that both Ca channel and Ca(2+)/Na(+) exchanger were involved in Cd uptake in daphnids, but there were also other possible pathways with higher affinity. The relative importance of different pathways was clearly dependent on the ambient Ca availability. Our findings are helpful for the development of a more accurate biotic ligand model in predicting the acute toxicity of Cd to daphnids.  相似文献   

16.
The use of nanoscaled materials is rapidly increasing, however, their possible ecotoxicological effects are still not precisely known. This work constitutes the first complex study focused on in vivo evaluation of the acute and chronic toxic effects and toxic limits of silver nanoparticles (NPs) on the eukaryotic organism Drosophila melanogaster. For the purpose of this study, silver NPs were prepared in the form of solid dispersion using microencapsulation method, where mannitol was used as an encapsulation agent. This newly prepared solid dispersion with a high concentration of silver NPs was exploited to prepare the standard Drosophila culture medium at a silver concentration range from 10 mg·L(-1) to 100 mg·L(-1) of Ag in the case of the acute toxicity testing and at a concentration equal to 5 mg·L(-1) in the case of the chronic toxicity testing. The acute toxic effect of silver NPs on Drosophila melanogaster was observed for the silver concentration equal to 20 mg·L(-1). At this silver concentration, 50% of the tested flies were unable to leave the pupae, and they did not finish their developmental cycle. Chronic toxicity of silver NPs was assessed by a long-term exposure of overall eight filial generations of Drosophila melanogaster to silver NPs. The long-term exposure to silver NPs influenced the fertility of Drosophila during the first three filial generations, nevertheless the fecundity of flies in subsequent generations consequently increased up to the level of the flies from the control sample due to the adaptability of flies to the silver NPs exposure.  相似文献   

17.
Size-reduced samples of southern yellow pine dimensional lumber, each treated with one of five different waterborne chemical preservatives, were leached using 18-h batch leaching tests. The wood preservatives included chromated copper arsenate (CCA), alkaline copper quaternary, copper boron azole, copper citrate, and copper dimethyldithiocarbamate. An unpreserved wood sample was tested as well. The batch leaching tests followed methodology prescribed in the U.S. Environmental Protection Agency toxicity characteristic leaching procedure (TCLP). The wood samples were first size-reduced and then leached using four different leaching solutions (synthetic landfill leachate, synthetic rainwater, deionized water, and synthetic seawater). CCA-treated wood leached greater concentrations of arsenic and copper relative to chromium, with copper leaching more with the TCLP and synthetic seawater. Copper leached at greater concentrations from the arsenic-free preservatives relative to CCA. Arsenic leached from CCA-treated wood at concentrations above the U.S. federal toxicity characteristic limit (5 mg/L). All of the arsenic-free alternatives displayed a greater degree of aquatic toxicity compared to CCA. Invertebrate and algal assays were more sensitive than Microtox. Examination of the relative leaching of the preservative compounds indicated that the arsenic-free preservatives were advantageous over CCA with respect to waste disposal and soil contamination issues but potentially posed a greater risk to aquatic ecosystems.  相似文献   

18.
Transport of Cryptosporidium parvum oocysts and microspheres in two disparate (a clay- and Fe-rich, volcanic and a temperate, humic) agricultural soils were studied in the presence and absence of 100 mg L(-1) of sodium dodecyl benzene sulfonate (SDBS), and Suwannee River Humic Acid (SRHA) at pH 5.0-6.0. Transport of carboxylate-modified, 1.8 μm microspheres in soil columns was highly sensitive to the nature of the dissolved organic carbon (DOC), whereas oocysts transport was more affected by soil mineralogy. SDBS increased transport of microspheres from 48% to 87% through the tropical soil and from 43% to 93% in temperate soil. In contrast, SRHA reduced transport of microspheres from 48% to 28% in tropical soil and from 43% to 16% in temperate soil. SDBS also increased oocysts transport through the temperate soil 5-fold, whereas no oocyst transport was detected in tropical soil. SRHA had only a nominal effect in increasing oocysts transport in tropical soil, but caused a 6-fold increase in transport through the temperate soil. Amendments of only 4 mg L(-1) SRHA and SDBS decreased oocyst hydrophobicity from 66% to 20% and from 66% to 5%, respectively. However, SDBS increased microsphere hydrophobicity from 16% to 33%. Soil fines, which includes clays, and SRHA, both caused the oocysts zeta potential (ζ) to become more negative, but caused the highly hydrophilic microspheres to become less negatively charged. The disparate behaviors of the two colloids in the presence of an ionic surfactant and natural organic matter suggest that microspheres may not be suitable surrogates for oocysts in certain types of soils. These results indicate that whether or not DOC inhibits or promotes transport of oocysts and microspheres in agricultural soils and by how much, depends not only on the surface characteristics of the colloid, but the nature of the DOC and the soil mineralogy.  相似文献   

19.
Arsenic removal is often challenging due to high As(III), phosphate, and silicate concentrations and low natural iron concentrations. Application of zerovalent iron is promising, as metallic iron is widely available. However, removal mechanisms remained unclear and currently used removal units with iron have not been tested systematically, partly due to their large size and long operation time. This study investigated smaller filter columns with 3-4 filters, each containing 2.5 g of iron filings and 100-150 g of sand. At a flow rate of 1 L/h, these columns were able to treat 75-90 L of well water with 440 microg/L As, 1.8 mg/L P, 4.7 mg/L Fe, 19 mg/L Si, and 6 mg/L dissolved organic carbon (DOC) to below 50 microg/L As(tot), without addition of an oxidant. As(III) was oxidized in parallel to oxidation of corrosion-released Fe(II) by dissolved oxygen and sorbed on the forming hydrous ferric oxides (HFO). The open filter columns prevented anoxic conditions. DOC did not appear to interfere with arsenic removal. Manganese was reduced after a slight initial increase from 0.3 mg/L to below 0.1 mg/L. About 100 mg of Fe(0)/L of water was required, 3-5 times less than that for larger units with sand and iron turnings.  相似文献   

20.
We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicitytests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 microg/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (< 1micromol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号