首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The theory of an arbitrarily oriented, shaped, and located beam scattered by a homogeneous spheroid is developed within the framework of the generalized Lorenz-Mie theory (GLMT). The incident beam is expanded in terms of the spheroidal vector wave functions and described by a set of beam shape coefficients (G(m)(n),(TM),G(m)(n),(TE)). Analytical expressions of the far-field scattering and extinction cross sections are derived. As two special cases, plane wave scattering by a spheroid and shaped beam scattered by a sphere can be recovered from the present theory, which is verified both theoretically and numerically. Calculations of the far-field scattering and cross sections are performed to study the shaped beam scattered by a spheroid, which can be prolate or oblate, transparent or absorbing.  相似文献   

2.
Various properties of an electromagnetic wave whose spherical multipole expansion contains only Riccati-Neumann functions are examined. In particular, the novel behavior of the beam phase during diffractive spreading is discussed. When a Neumann beam is scattered by a spherical particle, the diffraction and external reflection portions of the scattering amplitude constructively interfere for large partial waves. As a result, a set of rapidly decreasing beam shape coefficients is required to cut off the partial wave sum in the scattering amplitudes. Because of its strong singularity at the origin, a Neumann beam can be produced by a point source of radiation at the center of a spherical cavity in a high conductivity metal, and Neumann beam scattering by a spherical particle can occur for certain partial waves if the sphere is placed at the center of the cavity as well.  相似文献   

3.
Lock JA  Hodges JT 《Applied optics》1996,35(33):6605-6616
Experimental laser beam profiles often deviate somewhat from the ideal Gaussian shape of the axisymmetric TEM(00) laser mode. To take these deviations into account when calculating light scattering of an off-axis beam by a spherical particle, we use our phase-modeling method to approximate the beam-shape coefficients in the partial wave expansion of an experimental laser beam. We then use these beam-shape coefficients to compute the near-forward direction scattering of the off-axis beam by the particle. Our results are compared with laboratory data, and we give a physical interpretation of the various features observed in the angular scattering patterns.  相似文献   

4.
Khaled EE  Hill SC  Barber PW 《Applied optics》1994,33(15):3308-3314

The intensity of light scattered by a coated sphere illuminated with an off-axis Gaussian beam is calculated. Results are shown for different beam positions with respect to the sphere. As the beam is shifted further away from the surface of the sphere, the higher-Q morphology-dependent resonances become increasingly important in the backscatter spectra, and the angular scattering intensity becomes smoother.

The scattered intensity depends on the beam position, the refractive indices of the core and coat, the radius of the core, and the thickness of the coat. As the beam is moved further away from the sphere, the effect of the core on the scattering intensity decreases. When the incident Gaussian beam is focused outside of a particle with a relatively small core, the scattering spectra and angular scattering patterns become similar to those of a homogeneous sphere having the refractive index of the coat. These calculated results suggest that measurements of spectral scattering and angular scattering patterns for several Gaussian beam positions could be useful for the characterization of coated spheres.

  相似文献   

5.
We examine the reflection symmetries of the electromagnetic wave inside of a uniform spherical particle and identify the consequences of the symmetries for the Stokes parameters describing the polarization state of the far-field scattered wave. The connection between the two waves is described from a microphysical perspective that illustrates the wavelet-superposition origin of the scattered wave. In contrast to more conventional approaches, this microphysical perspective yields new insight into the physical character of the scattering of a plane wave by a sphere. The results of simulations are presented, which graphically demonstrate the relation between the symmetries present in the internal wave and the polarization state of the scattered wave.  相似文献   

6.
This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.  相似文献   

7.
Scattering of a Hermite-Gaussian beam field by a chiral sphere.   总被引:1,自引:0,他引:1  
Scattering of a Hermite-Gaussian beam field by a chiral sphere is analyzed. A Hermite-Gaussian beam field is expressed as a superposition of multipole fields at complex-source points. Electromagnetic fields are expanded in terms of the spherical vector wave functions. The unknown expansion coefficients for the scattered field and the internal field are determined by the boundary conditions. As numerical examples, the scattered near fields of the beam incidence are calculated, and the effects of the chirality and the radius of the chiral sphere on the fields are examined. The results for a Gaussian beam incidence are also compared with those of a plane-wave incidence.  相似文献   

8.
Lock JA  Wrbanek SY  Weiland KE 《Applied optics》2006,45(15):3634-3645
Near-forward scattering of an optically trapped 5-mum-radius polystyrene latex sphere by the trapping beam was examined both theoretically and experimentally. Since the trapping beam is tightly focused, the beam fields superpose and interfere with the scattered fields in the forward hemisphere. The observed light intensity consists of a series of concentric bright and dark fringes centered about the forward-scattering direction. Both the number of fringes and their contrast depend on the position of the trapping beam focal waist with respect to the sphere. The fringes are caused by diffraction that is due to the truncation of the tail of the trapping beam as the beam is transmitted through the sphere.  相似文献   

9.
10.
The problem of scattering of plane compressional wave by an elastic sphere embedded in an isotropic elastic medium of different material properties is solved. Approximate formulas are derived for the displacement field, stress tensor, stress intensity factors, far-field amplitudes and the scattering cross-section. It is assumed that the wave length is large compared to the radius of the scatterer. Various elastostatic limits are also presented.  相似文献   

11.
The problem of scattering of plane compressional wave by an elastic sphere embedded in an isotropic elastic medium of different material properties is solved. Approximate formulas are derived for the displacement field, stress tensor, stess intensity factors, far-field amplitudes and the scattering cross section. It is assumed that the wave length is large compared to the radius of the scatterer. Various elastostatic limits are also presented.  相似文献   

12.
Han Y  Wu Z 《Applied optics》2001,40(15):2501-2509
An approach to expanding a Gaussian beam in terms of the spheroidal wave functions in spheroidal coordinates is presented. The beam-shape coefficients of the Gaussian beam in spheroidal coordinates can be computed conveniently by use of the known expression for beam-shape coefficients, g(n), in spherical coordinates. The unknown expansion coefficients of scattered and internal electromagnetic fields are determined by a system of equations derived from the boundary conditions for continuity of the tangential components of the electric and magnetic vectors across the surface of the spheroid. A solution to the problem of scattering of a Gaussian beam by a homogeneous prolate (or oblate) spheroidal particle is obtained. The numerical values of the expansion coefficients and the scattered intensity distribution for incidence of an on-axis Gaussian beam are given.  相似文献   

13.
For most integrating sphere measurements, the difference in light distribution between a specular reference beam and a diffused sample beam can result in significant errors. The problem becomes especially pronounced in integrating spheres that include a port for reflectance or diffuse transmittance measurements. The port is included in many standard spectrophotometers to facilitate a multipurpose instrument, however, absorption around the port edge can result in a detected signal that is too low. The absorption effect is especially apparent for low-angle scattering samples, because a significant portion of the light is scattered directly onto that edge. In this paper, a method for more accurate transmittance measurements of low-angle light-scattering samples is presented. The method uses a standard integrating sphere spectrophotometer, and the problem with increased absorption around the port edge is addressed by introducing a diffuser between the sample and the integrating sphere during both reference and sample scan. This reduces the discrepancy between the two scans and spreads the scattered light over a greater portion of the sphere wall. The problem with multiple reflections between the sample and diffuser is successfully addressed using a correction factor. The method is tested for two patterned glass samples with low-angle scattering and in both cases the transmittance accuracy is significantly improved.  相似文献   

14.
Smith GS 《Applied optics》2011,50(28):5422-5429
An analytical model is formulated for the extinction of light by particles in a cavity ringdown spectroscopy measurement. The electromagnetic field inside the cavity is assumed to be the lowest-order Gaussian beam, and the scattering by the particles is incorporated using van de Hulst's approximation for the scattering by a sphere. This model includes both coherent scattering in the forward direction and strong scattering in the forward direction for electrically large particles. The model is used to estimate the amount of energy scattered by the particles that is coupled back into the incident beam. The consequences of this coupling for the measurement of the extinction cross section of spherical particles are examined.  相似文献   

15.
Xu YL 《Applied optics》1997,36(36):9496-9508
In electromagnetic multisphere-scattering calculations the reexpansion method for seeking a single-field representation of the total scattered field is found impracticable because of severe numerical problems. We present a simple single-field expansion of the total scattered far field based on an asymptotic form of vector translational addition theorems. With this asymptotic expansion of the far field, we derive analytical expressions for the scattering properties of an arbitrary aggregate of spheres. Resulting formulas are free from numerical problems in practical applications. Theoretical predictions from this far-field solution for various aggregates of spheres that we tested agree favorably with laboratory microwave scattering measurements. Some numerical results are presented and compared with experimental data.  相似文献   

16.
Botet R  Rannou P  Cabane M 《Applied optics》1997,36(33):8791-8797
We apply the recent exact theory of multiple electromagnetic scattering by sphere aggregates to statistically isotropic finite fractal clusters of identical spheres. In the mean-field approximation the usual Mie expansion of the scattered wave is shown to be still valid, with renormalized Mie coefficients as the multipolar terms. We give an efficient method of computing these coefficients, and we compare this mean-field approach with exact results for silica aggregates of fractal dimension 2.  相似文献   

17.
Arrayed silicon prism coupler for a terahertz-wave parametric oscillator   总被引:2,自引:0,他引:2  
Kawase K  Shikata J  Minamide H  Imai K  Ito H 《Applied optics》2001,40(9):1423-1426
Using room-temperature parametric oscillation of a LiNbO(3) crystal pumped by a Q-switched Nd:YAG laser with a simple configuration, we have realized a widely tunable coherent terahertz- (THz-) wave source in the range between 1 and 3 THz. Inasmuch as the THz wave is affected by total internal reflection at the crystal edge, we used a Si prism coupler to couple out the THz wave. We introduce an arrayed Si-prism coupler that increases the efficiency and decreases the diffraction angle. By use of the arrayed-prism coupler, there is a sixfold increase in coupling efficiency and a 40% decrease in the far-field beam diameter, compared with the use of a single-prism coupler. We discuss the negative effect of the free carriers at the Si-prism surface that is excited by the scattered pump beam, and the positive effect of cavity rotation on the unidirectional radiation of the THz wave from a Si prism.  相似文献   

18.
Turcu I 《Applied optics》2006,45(4):639-647
The scattering process induced in blood by a collimated laser beam is theoretically investigated. An individual red blood cell (RBC) has a scattering phase function strongly peaked in the forward direction. For far-field experiments, the small scattering volumes can be considered as "macroscopic particles" characterized by an effective scattering phase function. Using the single-cell phase function as "input data" the angular distribution of light scattered at small angles by the whole scattering volume, containing RBCs in suspension, is calculated analytically. The angular dispersion of the light scattered by blood can be approximately described by the same formula used to characterize the light scattered by a single cell but with an effective, hematocrit-dependent anisotropy parameter.  相似文献   

19.
Ch. Zhang  D. Gross 《Acta Mechanica》1993,101(1-4):231-247
Summary The interaction of plane time-harmonic SH-waves with micro-cracks in transversely isotropic materials is investigated. Elastic wave scattering by a single micro-crack is first analyzed. The scattered displacement is expressed as a Fourier integral containing the crack opening displacement. By using this representation formula and by invoking the traction-free boundary condition on the faces of the crack, a boundary integral equation for the unknown crack opening displacement is obtained. Expanding the crack opening displacement into a series of Chebyshev polynomials and adopting a Galerkin method, the boundary integral equation is converted into an infinite system of inear algebraic equations for the expansion coefficients which is solved numerically. Numerical results are presented for the elastodynamic stress intensity factors, the scattered far-field and the scattering cross section of a single crack. Then, propagation of plane time-harmonic SH-waves in a transversely isotropicmaterial permeated by a random and dilute distribution of micro-cracks is investigated. The effects of the micro-crack density on the attenuation coefficient and the phase velocity are analyzed by appealing to a simple energy consideration and by using Kramers-Kronig relations.  相似文献   

20.
This paper presents the scattering solution for a finite dense layer of cylinders irradiated by an arbitrarily polarized plane wave at a general incident direction. The theoretical formulation utilizes the effective field approach and quasi-crystalline approximation to derive the governing equations for the propagation constant and amplitudes of the effective waves. The finite layer thickness gives rise to effective waves propagating in both the forward and backward directions inside the dense medium. Formulas are developed for the far-field coherent and incoherent scattered intensities, as well as the extinction and scattering cross sections of the dense layer. The forward peak of the incoherent scattered intensity is shown to be shifted to the propagating direction of the effective waves. The influence of incident direction, layer thickness, and solid volume fraction on the scattering properties is illustrated by means of a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号