首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite gels were prepared from 2% myofibrillar protein (MP) with 10% imbedded pre-emulsified plant oils (olive and peanut) of various particle sizes at 0.6 M NaCl, pH 6.2. Dynamic rheological testing upon temperature sweeping (20-70 °C at 2 °C/min) showed substantial increases in G′ (elastic modulus) of MP sols/gels with the addition of emulsions, and the G′ increases were inversely related to the emulsion droplet size. Furthermore, gels containing emulsified olive oil had a greater (P < 0.05) hardness than those containing emulsified peanut oil. Regardless of oil types, MP-coated oil droplets exhibited stronger reinforcement of MP gels than Tween 80-stablized oil droplets; the latter composite gels had considerable syneresis. Light microscopy with paraffin sectioning revealed a stable gel structure when filled with protein-coated oil droplets, compared to gels with Tween 80-treated emulsions that showed coalesced oil droplets. These results suggest that rheological characteristics, hardness, texture, and water-holding capacity of MP gels were influenced by type of oils, the nature of the interfacial membrane, and the size of emulsion droplets.  相似文献   

2.
Mangang  Wu  Youling L.  Xiong  Jie  Chen  Xueyan  Tang  Guanghong  Zhou 《Journal of food science》2009,74(4):E207-E217
ABSTRACT:  The objective of the study was to investigate the role of emulsified fat (lard) and oil (peanut oil) in the rheology and microstructure of porcine myofibrillar protein (MP) gels. Heat-induced composite gels were prepared from 2% MP with 0% to 15% pre-emulsified lipids at 0.6 M NaCl, pH 6.2. Dynamic rheological testing upon temperature sweeping (20 to 80 °C at 2 °C/min) showed substantial increases in G ' (an elastic modulus) of MP sols/gels with the addition of emulsions. Gel hardness was markedly enhanced ( P < 0.05) by incorporating ≥10% emulsions, and the composite gel with 15% lard was 33% more rigid ( P < 0.05) than that with 15% peanut oil. Incorporation of both emulsions at 10% or higher levels improved the water holding capacity of the gels by 28% to 44% ( P < 0.05). Light microscopy revealed a compact gel structure filled with protein-coated fat/oil globules that interacted with the protein matrix via disulfide bonds. The results indicated that both physical and chemical forces contributed to the enhancements in the rheology, moisture retention, and lipid stabilization in the MP–emulsion composite gels.  相似文献   

3.
研究不同油相及其添加量对转谷氨酰胺酶诱导制备的花生蛋白-果胶复合乳液凝胶质地特性的影响规律,同时通过流变学和微观结构特性研究探索乳液凝胶的形成机理。结果表明:花生蛋白-果胶复合乳液凝胶的凝胶强度显著高于水凝胶。凝胶外观和储能模量(G’)结果表明油滴与蛋白-果胶组成的凝胶基质相互作用,从而影响乳液凝胶的质地和凝胶强度。油相添加量的增加可以使乳液凝胶的力学性能增强,网络结构更稳定。花生蛋白-果胶复合乳液凝胶的G’值和硬度随油相添加量的增加而增大,说明分散的油滴作为活性填料与凝胶基质相互作用。花生蛋白-果胶复合乳液凝胶的微观结构结果表明,油相添加量60%(V/V)时24度棕榈油为油相的乳液凝胶网络结构更致密。研究结果为花生蛋白-果胶复合乳液凝胶在食品领域的开发利用提供思路。  相似文献   

4.
The microstructural and large deformation rheological properties of model food gels were studied by performing notch propagation tensile testing on the gels using a tensile stage and observing changes in the microstructure of the gels during tensile testing using confocal laser scanning microscopy (CLSM). Heat-set whey protein (WP) gels containing either added sodium caseinate (NaCN) or sunflower oil droplets emulsified with WP or NaCN as the emulsifier protein were prepared in 0 or 50 mM NaCl. The WP gel structure strengthened in the presence of added NaCl and NaCN. The rheological properties of WP gels containing sunflower oil droplets emulsified with WP or NaCN were influenced by the NaCl concentration, oil concentration and extent of oil droplet aggregation in the gel or by the type of emulsifier protein used. During tensile testing, the notch length in all gels increased above a certain critical stress, leading to fracture of the gels through the notch. Also, the microstructural changes in the oil phase of emulsion filled gels subjected to tensile testing were influenced by the structural properties of the WP gel matrix and the proximity of the oil droplet to the fracture path.  相似文献   

5.
When skim milk (SM) and whey-protein-enriched skim milk (WPE-SM) were heated (80 °C, 30 min) with N-ethylmaleimide (NEM, 0–0.8 mm), the levels of residual native whey proteins increased to ∼70%, whereas the levels of disulphide-bonded whey proteins decreased to <10%. Acid gels prepared from heated SM with added NEM had slightly lower firmness than those made from control heated SM because the former gels lacked intermolecular disulphide bonds. In contrast, acid gels made from heated WPE-SM with added NEM had higher firmness than those prepared from control heated WPE-SM. This implies that, even without intermolecular disulphide bonds, non-covalent interactions can be sufficient to produce acid gels with firmness higher than gels with disulphide bonds. Nevertheless, disulphide interactions can be more important than non-covalent interactions in influencing the yield properties of the gels because acid gels without disulphide bonds can be fractured more easily than those with disulphide bonds.  相似文献   

6.
Differently structured whey protein emulsion gels were formed by heating at different concentrations of NaCl. The formation of gels was monitored by oscillatory rheometry. The large deformation properties relevant to breakdown properties in the human mouth were measured by a uniaxial compression test and fracture wedge set test using a texture analyzer. A panel of 8 subjects was used to examine the in-mouth behaviours of gels including mastication parameters, degree of fragmentation and oil droplet release. The results showed that in general the gel hardness increased with increasing NaCl concentration. The gels containing 10/25 and 100/200 mM NaCl were characterized as being soft and hard, respectively. These soft and hard gels had different breakdown patterns in the mouth. On the other hand, sensory experiments showed the gel with 10 mM NaCl needed a significantly lower number of chewing cycles (19.4 ± 2.1) compared with gels with higher NaCl. The values of median size of particles in masticated gels containing 10, 25, 100 and 200 mM NaCl were about 4.00, 2.85, 1.05 and 0.95 mm, respectively, which suggested that higher hardness led to greater fragmentation in the human mouth. The fragmentation of the gel was highly correlated with functions of the mechanical properties. There was no obvious coalescence of the oil droplets during oral processing and only very few oil droplets were released from protein matrix during mastication.  相似文献   

7.
COLD GELATION OF WHEY PROTEIN EMULSIONS   总被引:4,自引:0,他引:4  
Stable and homogeneous emulsion‐filled gels were prepared by cold gelation of whey protein isolate (WPI) emulsions. A suspension of heat‐denatured WPI (soluble WPI aggregates) was mixed with a 40% (w/w) oil‐in‐water emulsion to obtain gels with varying concentrations of WPI aggregates and oil. For emulsions stabilized with native WPI, creaming was observed upon mixing of the emulsion with a suspension of WPI aggregates, likely as a result of depletion flocculation induced by the differences in size between the droplets and aggregates. For emulsions stabilized with soluble WPI aggregates, the obtained filled suspension was stable against creaming, and homogeneous emulsion‐filled gels with varying protein and oil concentrations were obtained. Large deformation properties of the emulsion‐filled cold‐set WPI gels were determined by uniaxial compression. With increasing oil concentration, the fracture stress increases slightly, whereas the fracture strain decreases slightly. Small deformation properties were determined by oscillatory rheology. The storage modulus after 16 h of acidification was taken as a measure of the gel stiffness. Experimental results were in good agreement with predictions according to van der Poel's theory for the effect of oil concentration on the stiffness of filled gels. Especially, the influence of the modulus of the matrix on the effect of the oil droplets was in good agreement with van der Poel's theory.  相似文献   

8.
The storage modulus (G′) and fracture properties of the non-treated and NEM-treated emulsion gels were investigated in the absence and presence of unadsorbed soy protein aggregates (USPA). In the absence of USPA, a decrease in the G′ of emulsion gels was observed after NEM treatment. However, in the presence of USPA, the addition of NEM only slightly decreased the G′ (p < 0.05). For both non-treated and NEM-treated emulsions, a ∼63-folds higher G′ value was obtained after the USPA addition. These results revealed the presence of sulphydryl group – disulfide bond interchange reactions at ambient temperature and under acidic conditions. In the absence of USPA, the sulphydryl group – disulfide bond interchange reactions was the main interactions responsible for the higher G′ values of non-treated emulsion gels, but for the emulsions with USPA presented, the large quantity of non-covalent interactions (e.g. hydrophobic group & hydrogen bonds) is the main interactions responsible for the aggregation and gelation of emulsion droplets. In the presence of USPA, the sulphydryl group – disulfide bond interchange reactions formed in the non-treated emulsion gels did not increase the final G′ but increased the stability of network. A power law relation was observed between the USPA concentration and the final G′, as well as between the oil volume fraction and the fracture stress/strain.  相似文献   

9.
There is growing consumer demand for plant-based meat and seafood analogs due to ethical, environmental, and health concerns associated with the production of real meat and seafood. Meat and seafood analogs should mimic the desirable appearance, texture, and flavor of the real versions. In this study, we investigated the possibility of using advanced emulsion technologies to create plant-based adipose tissue. High internal phase emulsions (HIPEs) were formulated that consisted of concentrated dispersions of soybean protein-coated soybean oil droplets. The HIPEs contained 75% soybean oil and 0.25 to 3% soybean protein. At higher protein contents, the HIPEs mimicked the appearance of beef adipose tissue but were too soft at ambient temperature and did not melt upon heating. These problems could be partly overcome by using emulsion gels that consisted of soybean protein-coated soybean oil droplets dispersed in an agar hydrogel. The final composition of these emulsion gels was 60% soybean oil, 2% soybean protein, and 0.25 to 2% agar. The incorporation of the agar increased the hardness of the emulsion gels at ambient temperature and led to melting behavior. Nevertheless, the emulsion gels were still somewhat softer that real beef adipose tissue at ambient temperature and they melted at a higher temperature. These results show that concentrated emulsion gels containing cold-setting polysaccharides may be useful for mimicking the desirable physicochemical attributes of animal adipose tissue but further research is required to more accurately simulate their properties.  相似文献   

10.
VISCOELASTIC PROPERTIES OF HEAT-SET WHEY PROTEIN EMULSION GELS   总被引:6,自引:0,他引:6  
The viscoelastic properties of heat-set whey protein gels and whey protein-stabilized emulsion gels have been studied using the dynamic oscillatory rheometry technique. The storage modulus was monitored and analysed for pure protein gels and emulsion gels over a wide range of protein concentrations. The dependence of storage modulus on protein concentration is different for gels of low and high modulus. At low protein concentrations, the increase of storage modulus is much more sensitive to the increase of protein concentration. The protein-coated oil droplets behave as active filler particles and dramatically enhance the gel strength. The effect of the oil volume fraction on the rheology has been investigated for emulsion gels containing 11 vol. %, 20 vol. % and 45 vol. % Trisun oil. The formula of van der Poel fails to describe the experimental results. This is attributed to the strongly flocculated state of the emulsion system.  相似文献   

11.
卤制工艺中风味组分的控制释放有望对卤制品品质的工业标准化程度进行调控。以蛋清蛋白和可得然胶为基质材料,以肉桂油为风味组分代表,水油两相均质后通过热诱导法制备乳液凝胶,探究肉桂油添加对乳液凝胶特性及释放肉桂醛性能的影响。结果表明,与大豆油乳液凝胶相比,肉桂油乳液凝胶颜色偏黄,微观结构更加致密,持水率、硬度、储能模量和损耗模量等参数显著增加,且当肉桂油质量分数为5%时凝胶性能最强。随着肉桂油添加量的增加,凝胶转变时间缩短,同时乳液凝胶的黏弹性减弱,亮度增加、黄度降低。红外光谱证实了肉桂油中的肉桂醛与蛋清蛋白发生了席夫碱反应,从而促进乳液凝胶的形成及凝胶性能的提升。在模拟卤制品加工环境下,肉桂油乳液凝胶对所含肉桂醛具有良好的控释效果:水相中肉桂醛的释放率随肉桂油添加量的增加而减小,当肉桂油质量分数从5%增加至11%时,乳液凝胶在水中煮制1h后,肉桂醛的累积释放率降低35.44%;与在水中煮制相比,调味料氯化钠、醋酸与乙醇可促进水相中肉桂醛的释放,且在醋酸中的累积释放率增幅最大(15.95%);但模拟卤制基质中的蛋白质和多糖会抑制肉桂醛的释放,累积释放率降低9.58%以上。乳液凝胶在模拟食品加工过程中能维持原有块状形貌,但在酸性条件下质地变硬、体积缩小、损失率最大,且凝胶结构破坏程度最严重,促进了肉桂醛的释放。因此,蛋清蛋白/可得然胶乳液凝胶的质地与释放性能可通过肉桂油的活性填充进行调控。研究结果旨在为食品工业中风味控释技术的开发提供理论参考。  相似文献   

12.
研究负载白藜芦醇的红花籽油乳液(10 mL/100 g)对金线鱼鱼糜凝胶性能、微观结构和氧化稳定性的影响,比较不同添加量(0.1%~0.3%)的白藜芦醇对鱼糜凝胶品质的影响。结果表明,红花籽油乳液的添加使金线鱼鱼糜凝胶的白度、持水性和结合水含量增加,凝胶质构特性较好,蒸煮损失率较低(P<0.05),且凝胶三维网络结构孔径较小,但凝胶基质中油滴分布不均匀,其油滴的平均直径大于2.0 μm,油脂的氧化性随贮藏时间的延长而增加(P<0.05);添加负载白藜芦醇的红花籽油乳液后,金线鱼鱼糜凝胶的白度和持水性增加,蒸煮损失率下降(P<0.05),且凝胶的质构和油脂氧化性稳定性明显增强(P<0.05),白藜芦醇在鱼糜凝胶基质中仍具有强抗氧化性。白藜芦醇能进一步乳化红花籽油,使细小油滴在凝胶基质中均匀分布,且与鱼糜中蛋白质相互作用促进了凝胶网络结构的形成。当白藜芦醇添加量为0.3%时,油滴的平均直径小于1.5 μm,凝胶三维网络结构的孔径最小,具有均匀致密的空间层次感。因此,负载白藜芦醇的红花籽油乳液能改善金线鱼鱼糜的凝胶特性,增强凝胶的氧化稳定性,为新型鱼糜制品的开发提供参考。  相似文献   

13.
Effects of oil droplets in an agar gel matrix were investigated by mechanical analyses and sensory evaluation. The results for compressive and puncture properties were expressed in terms of relative values. All compressive properties; stress, strain and compressive energy of emulsion gels, as obtained by compression tests, decreased with both increases of oil droplet size and oil volume fraction. The stress, strain and energy of the emulsion gels obtained by puncture tests did not change with an increase in oil droplet size. Results of sensory evaluation showed that the sample containing small oil droplets was harder than that with large oil droplets. On the other hand, the large oil droplet sample was oilier than that with small oil droplets. The sensory evaluations for hardness and oiliness of emulsion gels did not exhibit significant relations to most of the properties of mechanical analyses.  相似文献   

14.
分别采用空气冻结、浸渍冻结和超声辅助浸渍冻结(ultrasonic-assisted immersion freezing,UIF)猪肉背最长肌,提取肌原纤维蛋白(myofibrillar protein,MP)并分析其乳化活性与乳化稳定性、乳液粒径、流变特性、凝胶强度、蒸煮损失率、水分分布与微观形貌变化,研究不同冻结...  相似文献   

15.
EFFECT OF EMULSION DROPLETS ON THE RHEOLOGY OF WHEY PROTEIN ISOLATE GELS   总被引:2,自引:0,他引:2  
The effects of droplet size and emulsifier type on the rheology of whey protein isolate (WPI) gels containing emulsion droplets was studied. Gels were prepared by dispersing droplets of corn oil (20 wt%, d32= 0.7 – 4 μm) in a 10 wt% WPI solution (pH 7.0, 50 mM NaCl), and heating at 90C for 15 min. Gel strength was determined by measuring the stress of gels at 20% compression using an Instron Universal Testing Machine. Droplets stabilized by WPI increased the gel strength, those stabilized by non-ionic surfactants (Tween 20 and Triton X-100) decreased it slightly, and those stabilized by SDS decreased it drastically. Gel strength increased as the droplet size decreased for droplets stabilized by WPI, but was relatively insensitive to the size of droplets stabilized by the small molecule surfactants. These observations may be explained in terms of the interactions between the emulsifiers and the protein network. Droplets coated with emulsifiers which can be incorporated into the protein network reinforce the structure and so increase gel strength, whereas droplets coated with emulsifiers which cannot be incorporated into the protein network disrupt the three dimensional structure of the gel and decrease its strength.  相似文献   

16.
Low levels of β-mercaptoethanol (β-ME) or N-ethylmaleimide (NEM) were added to preheated skim milk (SM) and preheated whey protein-enriched skim milk (WPE-SM). Addition of NEM did not affect the heat-induced interactions between the proteins in heated SM and WPE-SM; addition of β-ME reduced most disulphide bonds of κ-casein. Neither NEM nor β-ME affected the distribution of proteins between the colloidal and serum phases. The heated then treated SM and WPE-SM were acidified to form acid gels. Acid gels containing β-ME had higher yield stress and G′ values than those made from control heated milk. In contrast, adding NEM to heated SM and WPE-SM lowered the yield stress values of the acid gels, but affected the final G′ values only slightly. The rheological results suggested that thiol-disulphide exchange reactions occurred during acid gelation. However, the newly formed disulphide bonds influenced only the yield properties, not the G′ values of the gels.  相似文献   

17.
This study investigated the effect of the spatial distribution of fat on the perception of fat-related sensory attributes using a model system that consisted of layered agar/gelatin gels containing oil-in-water (O/W) emulsion droplets dispersed in the gel matrix. Four layers of gel varying in the amount of emulsion droplets were combined to prepare samples with homogeneous and inhomogeneous distributions of fat (emulsion droplets). The composition of the gels was optimized to obtain samples with comparable mechanical properties.  相似文献   

18.
将蜡制玉米淀粉、酯化蜡制玉米淀粉和交联酯化蜡制玉米淀粉以添加量分别为0%、2%、4%、6%、8%、10%添加到肌原纤维蛋白中,形成蛋白淀粉复合物,研究3?种淀粉对肌原纤维蛋白凝胶保水性、质构特性、白度值、表面疏水性、流变特性和微观结构的影响。结果表明,相比纯肌原纤维蛋白,淀粉均能显著提高复合凝胶的保水性、硬度和弹性(P<0.05),且随添加量的增加而显著增加(P<0.05),但在添加量为10%时,各指标上升不显著(P>0.05),其中交联酯化蜡制玉米淀粉效果最好;3?种淀粉均能增加复合凝胶的白度值,但交联酯化蜡制玉米淀粉的添加会使复合凝胶的白度值过大(P<0.05),对色泽不利;同时,淀粉能显著提高复合蛋白的表面疏水性和凝胶的弹性模量(P<0.05),且随着添加量的增加而显著增加(P<0.05),与肌原纤维蛋白凝胶相比,复合凝胶结构趋于致密均匀。在实验的3?种淀粉中,除色泽因素外,交联酯化蜡制玉米淀粉提高凝胶性能的效果要优于其他两种淀粉。?  相似文献   

19.
In this work the lubrication behaviour of emulsions, gels, and emulsion-filled gels was studied in relation to their composition and structure. It was found that emulsions had much lower friction coefficients than their continuous phases. Emulsions with 40 wt% oil had the same friction coefficient as the pure oil. The lubrication properties of the gels, sheared by pressing them through a syringe, strongly depended on the molecular properties of the gelling agent and on the breakdown behaviour of the gel matrix. For each type of emulsion-filled gel, the lubrication behaviour was affected by the interactions between oil droplets and matrix. For gels containing oil droplets bound to the matrix, the friction coefficient gradually decreased with increasing oil concentration. For gels containing oil droplets non-bound to the matrix, the friction coefficient of the filled gels was lower than that of the same gel matrix without oil. However, no effect of the oil concentration on friction was observed. The different effects of the oil concentration on the lubrication behaviour of the various gels were explained by the relation between droplet–matrix interactions and the ‘apparent viscosity’ of the sheared gels. For gels with bound droplets, increasing the oil concentration resulted in an increase of the ‘apparent viscosity’ of the sheared gel. For gels with unbound droplets, the oil concentration did not affect the ‘apparent viscosity’. Confocal laser scanning microscopy (CLSM) observations of both emulsions and filled gels did not reveal coalescence of the oil droplets as a result of the shear treatment inherent to friction measurements.  相似文献   

20.
The destabilisation mechanism of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenisation conditions and crystallisation temperatures (10, 5, 0, −5 and −10 °C). A mixture of anhydrous milk fat and soya bean oil was used as the lipid phase and whey protein isolate (2 wt%) as emulsifier. Crystallisation and melting behaviours were analysed using differential scanning calorimetry. Physicochemical stability was measured with a vertical scan macroscopic analyser. Emulsions with 20% oil were found to be less stable than those with 40% oil. For 20% o/w emulsions, the crystallisation was delayed and inhibited in emulsions with smaller droplets and promoted in emulsions with larger droplets when compared with 40% o/w emulsions. Depending on the droplet sizes in the emulsion, the formation of lipid crystals (in combination with the emulsifier) either stabilises (small droplets) or destabilises (big droplets) the emulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号