首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 106 毫秒
1.
苯烷基化合成高温润滑油基础油   总被引:1,自引:1,他引:0  
 采用三氯化铝催化体系 AlCl3/HCl 对苯与癸烯-1的烷基化反应进行了研究。探讨了反应温度和反应时间对烷基化反应的影响。用气相色谱和红外光谱表征了产物的组成和结构,按照石油和石油产品试验方法国家标准测定了产物的黏度、凝点和相对分子质量。结果表明,该烷基化反应的产物主要为二烷基苯和癸烯五聚物的混合物。该混合物是具有较高黏度指数(124~164)、低凝点(-48~-62℃)、相对分子质量适中(425~720)的理想的润滑油基础油组分。  相似文献   

2.
采用Et3NHCl AlCl3离子液体催化剂催化1 C12烯烃齐聚反应,考察了反应时间和温度对齐聚反应的影响。用色谱 质谱仪和红外光谱仪表征了产物的组成和结构,并按照石油和石油产品试验方法国家标准测定了产物的性能。结果表明,在反应时间为1~4 h、温度为25~75℃的范围内,1 C12烯烃齐聚反应的产物主要是其三聚体、四聚体和五聚体,是具有长侧链的聚α 烯烃。该混合物具有高黏度(ν100为321~532 mm2/s)、较高黏度指数(169~189)、低倾点(-33℃~-42℃)、适中相对分子质量(645~740)的特性,可作为高性能合成润滑油基础油。  相似文献   

3.
采用rac-Et(Ind)_2ZrCl_2/MAO(MAO:甲基铝氧烷)体系催化1-癸烯齐聚制备润滑油基础油,考察了反应温度、n(Al)∶n(Zr)、催化剂用量等对催化剂活性和产物运动黏度的影响,利用GC,~(13)C NMR等方法对产物的结构进行表征,并测定了产物的倾点、运动黏度等。实验结果表明,当1-癸烯用量为40 m L、催化剂用量为10μmol、n(Al)∶n(Zr)=300、反应温度为60℃、反应时间为2 h时,催化剂活性为1 150 kg/(mol·h),产物的综合性能较好,100℃时的运动黏度为65.1mm2/s、重均相对分子质量为3 781、倾点为-52℃,是一种具有高黏度、高黏度指数,高低温性能较好的聚α-烯烃合成油。  相似文献   

4.
用硅桥联茂金属催化体系rac-Me_2Si(1-Ind)_2ZrCl_2/Al(i-Bu)_3/[Me_2NHPh]~+[B(C_6F_5)_4]~-催化1-癸烯聚合,考察了茂金属浓度、Al/Zr摩尔比、B/Zr摩尔比、反应温度、反应时间对聚合产物性能的影响。结果表明:在Zr/1-癸烯摩尔比为4×10~(-5)、Al/Zr摩尔比为80、B/Zr摩尔比为1.2、反应温度为80℃、反应时间为1h的条件下,1-癸烯的转化率达到97.6%,运动黏度(100℃)为599.4mm~2/s,黏度指数为285,倾点为-26℃,数均相对分子质量为12 608,相对分子质量分布为1.86。同时结合聚合反应机理和催化剂微观构型,对比分析了硅桥联茂金属催化体系rac-Me_2Si(1-Ind)_2ZrCl_2/Al(i-Bu)_3/[Me_2NHPh]~+[B(C_6F_5)_4]~-与亚乙基桥联茂金属催化体系rac-Et(1-Ind)_2ZrCl_2/Al(i-Bu)_3/[Me_2NHPh]~+[B(C_6F_5)4]~-在催化1-癸烯聚合方面的不同表现,表明无论是从催化剂的活性还是从产物相对分子质量来看,硅桥联茂金属催化剂的性能明显优于亚乙基桥联催化剂。最后釆用全自动反应量热仪进行放大反应,得到此反应的聚合反应热为61.8kJ/mol。  相似文献   

5.
采用不同结构茂金属催化剂催化1-癸烯齐聚反应,考察齐聚反应条件对1-癸烯齐聚及产物分布的影响。结果表明:不同结构的茂金属对1-癸烯的催化活性和齐聚物组分分布影响显著,非桥联茂金属、大位阻的茂金属、限制构型的茂金属以及双核硅桥联的茂金属主要合成低黏度齐聚物(100 ℃运动黏度为2~5 mm2/s,二聚体含量大于50%);Cs-对称型茂金属具有较高的催化活性,合成中等黏度的齐聚物 (100 ℃运动黏度大于30 mm2/s)。GC-MS分析结果表明,茂金属催化合成的齐聚物主要由二聚体到五聚体的混合物组成。  相似文献   

6.
在低温(<10℃)条件下采用AlCl3催化1-癸烯齐聚合成高性能聚α-烯烃合成油(PAO),考察了催化剂用量、反应时间、高聚合反应温度对PAO性能的影响。确定最佳工艺条件为:催化剂用量(w)3%,低温反应时间10h,高聚合温度80℃,此工艺条件下产品PAO收率为90.88%,运动黏度(100℃)为62.66mm2/s,黏度指数为163,闪点(开口)为295℃,倾点为-45℃;在反应温度230℃、反应压力4.0MPa、空速0.2h-1、氢油体积比300:1的条件下对PAO进行加氢精制,产品的运动黏度(100℃)为60.07mm2/s,黏度指数为161,闪点(开口)为290℃,倾点为-40℃。  相似文献   

7.
以1-癸烯、1-辛烯、1-十二烯及其混合烯烃为原料,采用Ziegler-Natta催化剂,通过两段反应温度结合模式制备高黏度聚α-烯烃(PAO)合成油,并研究了原料种类、反应温度、反应时间及催化剂用量对PAO收率和性能的影响。实验结果表明,最佳工艺条件为混合烯烃(1-辛烯与1-癸烯体积比为1)为原料,第一段于20℃反应8 h,第二段于80℃反应2 h,催化剂用量4%(w),n(Al):n(Ti)=3.5。此工艺条件下,PAO收率为91.01%,运动黏度(100℃)为42.03 mm~2/s,黏度指数为157,闪点为288℃,倾点为-44℃。在反应温度230℃、反应压力4.0 MPa、体积空速0.2 h~(-1)、氢油体积比300的条件下加氢精制,PAO加氢产品的运动黏度(100℃)为41.27 mm~2/s,黏度指数为154,闪点为285℃,倾点为-40℃,产品性能优于市售的PAO-40。  相似文献   

8.
采用高温溶剂回流和溶液聚合法对无水AlCl3催化1-十二烯齐聚反应进行研究,合成了一种低黏度聚α-烯烃合成油(PAO)。通过催化剂用量、反应温度、反应时间对1-十二烯转化率、PAO收率以及产物分布的影响,确定的最佳工艺条件为:AlCl3添加量1.0%,反应时间2 h,反应温度110 ℃。在最佳工艺条件下,1-十二烯转化率为93%,溶剂损失率为15%左右,PAO收率为83%左右,产品PAO 100 ℃运动黏度为6.80 mm2/s左右,黏度指数为151左右,倾点为-43 ℃,开口闪点为240 ℃,是一种低黏度、高黏度指数、低倾点、高闪点的聚α-烯烃合成润滑油基础油,产品主要由二聚体、三聚体、四聚体以及少量的五聚体组成。该工艺具有较好的实验重复性。  相似文献   

9.
采用季戊四醇为引发剂、BF3为催化剂催化1-癸烯齐聚反应,在BF3气体压力一定(常压,呈鼓泡状)的条件下,考察了季戊四醇与1-癸烯质量比、反应时间、反应温度对1-癸烯齐聚反应的影响、最佳工艺条件下1-癸烯齐聚的效果以及季戊四醇的可循环性。对齐聚产物进行了气相色谱表征。结果表明:1-癸烯与季戊四醇质量比为10、反应时间为2.5 h、反应温度为20 ℃时,1-癸烯齐聚反应的转化率高达97.90%,齐聚产物中三聚物与四聚物之和所占质量分数高达84.17%;该齐聚产物可用于制备高性能合成润滑油基础油;季戊四醇的循环利用效果良好。  相似文献   

10.
采用高温气相色谱法测定了一种高黏度聚α烯烃(PAO)的组成。以PAO150为检测对象,采用ASTM D7169方法,确定样品中存在的PAO种类及聚合度,并用色谱等效温度方法求算出聚合度为2~13的聚1-癸烯类化合物的常压沸点。结果表明:PAO150中存在1-癸烯的2~16聚体;当聚1-癸烯的聚合度达13以上时,PAO的沸点比同碳数正构烷烃沸点低100℃以上;高黏度PAO150的釜式蒸馏过程易导致聚合物中的高沸点重组分热裂解,表现为黏度、黏度指数、相对分子质量等降低,溴指数增加。  相似文献   

11.
以茂金属为主催化剂、三异丁基铝和有机硼化物为助催化剂,煤制α-烯烃为原料,采用釜式聚合法合成了低黏度聚α-烯烃基础油(PAO)。通过考察主催化剂及助催化剂用量、反应温度、反应时间对煤制α-烯烃转化率以及产物分布的影响,确定最佳工艺条件为:主催化剂/煤制α-烯烃质量比为1×10~(-4),Al/Zr摩尔比为9,有机硼化物/茂金属质量比为2,反应温度115℃,反应时间2.5h。在该工艺条件下,所制备的PAO基础油的运动黏度(100℃)为8.15mm~2/s,黏度指数158,倾点-54℃,闪点286℃,诺亚克蒸发损失为3.46%,是一种低黏度、高黏度指数、低倾点、高闪点、低蒸发损失的聚α-烯烃,产品主要由四聚体、五聚体和少量的三聚体、六聚体组成,该工艺具有较好的试验重复性。  相似文献   

12.
传统石油基润滑油添加剂对环境的不利影响,使可生物降解的植物油基润滑油添加剂成为研究热点。以蓖麻油(CO)、马来酸酐(MAH)、苯乙烯(ST)为原料,偶氮二异丁腈(AIBN)为引发剂,甲苯为溶剂,合成了蓖麻油-马来酸酐-苯乙烯共聚物(PCMAS)。通过红外光谱(FT-IR)、核磁共振氢谱(1H NMR)表征了蓖麻油-马来酸酐-苯乙烯共聚物的结构,采用凝胶渗透色谱(GPC)测定了聚合物的相对分子质量及其多分散性指数,采用热重分析研究了聚合物的热稳定性,并对聚合物作为润滑油降凝剂和黏度指数改进剂的性能进行了评价。结果表明:当单体质量比m(CO)∶m(MAH)∶m(ST)=1.0∶0.2∶1.2、引发剂AIBN含量占总单体的0.5%(质量分数)、反应时间4 h、反应温度90℃时,共聚物收率为68.39%,其数均相对分子质量为0.348×105,多分散性指数为4.77。将蓖麻油-马来酸酐-苯乙烯共聚物添加到润滑油馏分(350~395℃)中,可降低润滑油的凝点,并提高其黏度指数。蓖麻油-马来酸酐-苯乙烯共聚物可作为一种具有降凝增黏双重功能的润滑油添加剂。  相似文献   

13.
以费-托合成油轻组分中所含1-庚醇和1-辛醛为模型化合物,系统研究含氧化合物对固载型Al/Ti双金属α-烯烃聚合催化剂结构、活性及其催化合成聚α-烯烃(PAO)性能的影响.结果表明,经1-庚醇和1-辛醛处理后,催化剂微观形貌、酸性、活性组分含量及结合形式均发生变化.随着含氧化合物质量浓度的增加,催化剂的Lewis酸和B...  相似文献   

14.
使用月桂酸改性的三氯化铝为催化剂,对1-十二烯合成中低黏度聚α-烯烃(PAO)进行研究,结合碳正离子聚合机理,分析了采用高温低聚方法获得中低黏度PAO的经济性问题。具体考察了催化剂用量、月桂酸与三氯化铝摩尔比、反应温度、反应时间、以及缩合改性试验中氯化氢是否溢出对PAO收率和二聚物含量的影响。结果表明,在三氯化铝质量分数为3%、月桂酸与三氯化铝摩尔比为0.9、聚合温度为50 ℃、反应时间为3 h的条件下,PAO收率达到85%,二聚体含量(w)控制在3.4%左右,100 ℃运动黏度为19.56 mm2/s,黏度指数为161,倾点为-48 ℃,合成PAO是一种中低黏度、高黏度指数、低倾点的PAO润滑基础油,并且具有较窄的相对分子质量分布和良好的蒸发性能。  相似文献   

15.
通过蒸汽裂解煤蜡制取α-烯烃,以此为原料在AlCl3/TiCl4复合催化体系下合成聚α-烯烃(PAO)基础油,并通过调和PAO以升级石油型基础油的黏度指数等级。结果表明,在裂解温度为670℃,停留时问为2.5s,水蜡质量比为0.16的条件下,裂解α-烯烃单程收率为28.4%;在催化剂用量(占原料的质量分数)为3%,聚合温度为80℃,聚合时间为3h的条件下,合成PAO的收率为73.27%,其在40,100℃的运动黏度分别为54.75,8.77mm2/s,黏度指数为138.0,凝点为-48℃,主要性质接近FOX公司的PA0—8产品指标;当合成PAO的调和比(占基础油的质量分数)为30%时,石油型基础油的黏度指数由60.7增大至96.0。  相似文献   

16.
基于大量有代表性的样本,采集其近红外光谱,结合化学计量学方法建立了预测加氢裂化尾油和基础油馏程、黏度、黏度指数和倾点的近红外分析模型,模型交互验证结果表明,近红外方法与实验室标准方法之间具有良好的一致性。通过配置在线近红外分析系统和应用所建加氢裂化尾油和基础油多性质近红外分析模型,将在线近红外光谱分析技术应用于润滑油加氢异构装置,对加氢裂化尾油和基础油进行在线分析,可在30 min内完成对6路物料馏程、黏度、黏度指数和倾点的在线分析。加氢裂化尾油初馏点和终馏点的预测标准偏差分别为7和6 ℃,100 ℃黏度为0.261 mm2/s,黏度指数为2;基础油初馏点和终馏点的预测标准偏差分别为5和6 ℃,40和100 ℃黏度分别为1.01、0.151 mm2/s,倾点为3 ℃,黏度指数为1,满足工业现场快速分析的需求。  相似文献   

17.
以三羟甲基丙烷、二元羧酸、单元脂肪酸为原料,在无溶剂条件下合成了三类复合酯类润滑基础油,以庚酸酯类复合酯合成为基础,考察了反应温度、真空度、反应时间和摩尔比例对酯化合成的影响,并对产品物理性能进行了测试分析,结果表明:此复合酯类润滑基础油在黏度指数、闪点、倾点及氧化安定性方面均表现出优良的性能,是一类性能优异的润滑基础油。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号