首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用高速鉴频鉴相器(TSPC)、经典抗抖动的电荷泵、交叉耦合差分延迟单元以及电阻分压相位内插电路等结构设计了一个应用于1000Base-T以太网收发器的频率综合器电路,并能兼容10/100Mbps模式.该电路同时满足发送电路上升下降斜率控制和时钟恢复电路对于多相时钟(128相)的需要,大大节约了面积和功耗.在晶振的绝对抖动σ约为16ps情况下,输出25MHz测试时钟信号σ仅为11ps.表明该频率综合器有较强的抑制噪声能力,能很好满足发送和接收电路对于时钟性能的要求.芯片采用SMIC 0.18μm的标准CMOS工艺,电源电压为1.8V,功耗小于4mW.  相似文献   

2.
采用高速鉴频鉴相器(TSPC)、经典抗抖动的电荷泵、交叉耦合差分延迟单元以及电阻分压相位内插电路等结构设计了一个应用于1000Base-T以太网收发器的频率综合器电路,并能兼容10/100Mbps模式.该电路同时满足发送电路上升下降斜率控制和时钟恢复电路对于多相时钟(128相)的需要,大大节约了面积和功耗.在晶振的绝对抖动σ约为16ps情况下,输出25MHz测试时钟信号σ仅为11ps.表明该频率综合器有较强的抑制噪声能力,能很好满足发送和接收电路对于时钟性能的要求.芯片采用SMIC 0.18μm的标准CMOS工艺,电源电压为1.8V,功耗小于4mW.  相似文献   

3.
CMOS集成时钟恢复电路设计   总被引:6,自引:1,他引:5  
该文设计了一个集成时钟恢复电路,恢复时钟的频率为125MHz。通过采用电流相减技术等补偿措施,很大程度上降低了振荡器的压控增益,从而在不影响电路性能的前提下大大地降低了芯片面积。本设计采用0.25m标准CMOS工艺实现,有效芯片面积小于0.2mm2,功耗仅10mW。在各种工艺角、温度以及供电电源条件下的仿真结果均表明,该电路相位偏差小于200ps,时钟抖动的峰峰值小于150ps。该文对一个采用本时钟恢复电路的100MHz PHY系统进行流片、测试,验证了时钟恢复电路能够正常工作。  相似文献   

4.
针对单光子探测盖革雪崩焦平面读出电路应用,基于全局共享延迟锁相环和2维H型时钟树网络,该文设计一款低抖动多相位时钟电路。延迟锁相环采用8相位压控延迟链、双边沿触发型鉴相器和启动-复位模块,引入差分电荷泵结构,减小充放电流失配,降低时钟抖动。采用H时钟树结构,减小大规模电路芯片传输路径不对称引起的相位差异,确保多路分相时钟等延迟到达像素单元。采用0.18 μm CMOS工艺流片,测试结果表明,延迟锁相环锁定频率范围150~400 MHz。锁定范围内,相位噪声低于–127 dBc/Hz@1 MHz,时钟RMS抖动低于2.5 ps,静态相位误差低于65 ps。  相似文献   

5.
针对单光子探测盖革雪崩焦平面读出电路应用,基于全局共享延迟锁相环和2维H型时钟树网络,该文设计一款低抖动多相位时钟电路.延迟锁相环采用8相位压控延迟链、双边沿触发型鉴相器和启动-复位模块,引入差分电荷泵结构,减小充放电流失配,降低时钟抖动.采用H时钟树结构,减小大规模电路芯片传输路径不对称引起的相位差异,确保多路分相时钟等延迟到达像素单元.采用0.18 mm CMOS工艺流片,测试结果表明,延迟锁相环锁定频率范围150~400 MHz.锁定范围内,相位噪声低于–127 dBc/Hz@1 MHz,时钟RMS抖动低于2.5 ps,静态相位误差低于65 ps.  相似文献   

6.
通过对传统的全数字多相位时钟产生电路进行分析和总结,提出一种新颖的延时校准算法。该算法通过优化调整延时单元的顺序,大大改善了全数字多相位时钟产生电路的非线性。整个电路基于全数字延迟锁相环,采用0.13μm CMOS工艺实现,并成功用于时间数字转换器中。输入时钟频率范围在110 MHz到140 MH间,对应的输出相位差为446 ps到568 ps,积分非线性小于0.35 LSB,微分非线性小于0.33 LSB。  相似文献   

7.
设计了一种基于某65 nm CMOS工艺的3.5 GHz时钟校准电路,应用于高速高精度DAC中。该电路采用延迟锁相环结构,优化DAC内部的数字和模拟通路时钟信号,使数据在3.5 GHz速率下完成正确转换,有效提高了系统时钟的稳定性。电源电压为1.2 V/3.3 V,时钟相位调节精度为2 ps/LSB,目标锁定相位可调,带有时钟占空比调制功能,最大功耗小于60 mW。  相似文献   

8.
采用0.18μm CMOS工艺设计了一款6.25 GHz锁相环倍频器,该倍频器适用于12.5 Gbit/s半速率复接的串行器/解串器(SerDes)发射系统。该锁相环倍频器不仅为SerDes发射系统提供6.25 GHz的时钟,也为系统提供1.25 GHz占空比1∶4的时钟。设计中鉴频鉴相器采用真单相时钟(TSPC)触发器,电荷泵采用电流舵结构,压控振荡器采用三级双延时环路结构,20分频器中的高速五分频采用源极耦合场效应晶体管逻辑(SCFL)触发器、低速四分频采用TSPC触发器。电路芯片面积为0.492 mm×0.668 mm。测试结果显示,锁相环的锁定范围为4.78~6.6 GHz,在1.8 V电源电压下核心电路的功耗为67.5 mW。当锁相环工作在6.25 GHz时,10 MHz频偏处相位噪声为-98.5 dBc/Hz,峰峰抖动为15 ps,均方根(RMS)抖动为3.5 ps。  相似文献   

9.
为了满足ICS(internet connection sharing,因特网连接共享)PCIE Gen2协议,可提供输入时钟信号给PC、PCIE桥芯片以及以太网等芯片,利用时钟扩频技术的研究来减少系统的电磁干扰问题。基于应用于ICS PCIE Gen2协议的设计要求,通过采用SMIC 0.18μm工艺设计传统锁相环结构,包括鉴频鉴相器、电荷泵、环路滤波器、环形振荡器、分频器以及相位插值器所设计的扩频时钟模块电路,实现了在满足指标400 MHz输出频率的基础上对扩频深度控制在-5×10-3以内,频谱峰值能量降低了10.32 dB,输出相位噪声在1 MHz频偏下为-107.378 dBc/Hz。未扩频模式下输出时钟的确定性抖动为31.6 ps,周期间RMS抖动为5.1 ps;进行扩频后,周期间RMS抖动为8.6 ps,满足了ICS PCIE Gen2的协议要求。  相似文献   

10.
刘琨  李铁虎  张俊安 《微电子学》2019,49(4):467-470, 476
介绍了一种高速宽带锁相环的架构设计和基本原理。设计了双压控振荡器结构,使得锁相环输出时钟信号的频率范围达到6.0~12.5 GHz。基于锁相环的线性模型,从理论上分析了各单元电路的相位噪声对总体输出相位噪声的影响。基于65 nm CMOS工艺,根据各单元电路相位噪声的典型数据,对锁相环的输出相位噪声和等效时钟抖动等参数进行了仿真。结果表明,电荷泵、输入参考时钟、分频器、压控振荡器对整体输出噪声的贡献分别为35.8%、30.3%、18.3%、14.6%,环路滤波器对相位噪声贡献很小。锁相环的整体仿真结果显示,在各种工艺角下,锁相环的输出时钟信号频率均可达到12.5 GHz,高频输出相位噪声带来的时钟抖动均小于1 ps。  相似文献   

11.
采用TSMC公司标准的0.18μm CMOS工艺,设计并实现了一个全集成的2.5Gb/s时钟数据恢复电路.时钟恢复由一个锁相环实现.通过使用一个动态的鉴频鉴相器,优化了相位噪声性能.恢复出2.5GHz时钟信号的均方抖动为2.4ps,单边带相位噪声在10kHz频偏处为-111dBc/Hz.恢复出2.5Gb/s数据的均方抖动为3.3ps.芯片的功耗仅为120mW.  相似文献   

12.
An integrated 10 Gb/s clock and data recovery (CDR) circuit is fabricated using SiGe technology, It consists of a linear-type phase-locked loop (PLL) based on a single-edge version of the Hogge phase detector, a LC-tank voltage-controlled oscillator (VCO) and a tri-state charge pump. A PLL equivalent model and design method to meet SONET jitter requirements are presented. The CDR was tested at 9.529 GB/s in full operation and up to 13.25 Gb/s in data recovery mode. Sensitivity is 14 mVpp at a bit error rate (BER)=10-9 . The measured recovered clock jitter is less than 1 ps RMS. The IC dissipates 1.5 W with a -5 V power supply  相似文献   

13.
A monolithic clock and data recovery PLL circuit is implemented in a digital silicon bipolar technology without modification. The only external component used is the loop filter capacitor. A self-aligned data recovery architecture combined with a novel phase-detector design eliminates the need for nonlinear processing and phase shifter stages. This enables a simpler design with low power and reduced dependence on the bit rate. At 2.3 Gb/s, the test chip consumes 100 mW from a -3.6-V supply, excluding the input and output buffers. The worst-case rms jitter of the recovered clock is less than 14 ps with 223-1 pseudorandom bit sequence  相似文献   

14.
A fully integrated clock and data recovery circuit (CDR) using a multiplying shifted-averaging delay locked loop and a rate-detection circuit is presented. It can achieve wide range and low jitter operation. A duty-cycle-insensitive phase detector is also proposed to mitigate the dependency on clock duty cycle variations. The experimental prototype has been fabricated in a 0.25-/spl mu/m 1P5M CMOS technology and occupies an active area of 2.89 mm/sup 2/. The measured CDR could operate from 125 Mb/s to 2.0 Gb/s with a bit error rate better than 10/sup -12/ from a 2.5-V supply. Over the entire operating frequency range, the maximum rms jitter of the recovered clock is less than 4 ps.  相似文献   

15.
用于时钟恢复电路的低抖动可变延迟线锁相环电路   总被引:2,自引:0,他引:2  
李曙光  朱正  郭宇华  任俊彦 《微电子学》2001,31(1):49-52,57
文中给出了一个基于压控可变延迟线的电荷泵锁相环电路的设计,用于时钟恢复电路中采样时钟沿的定位,它的工作不受环境和工艺的影响,保证了采集数据的准确性。应用于延迟线中的改进的延迟单元有效地减小了相位抖动,环路滤波电路的设计避免了电荷重新分配引入的影响。电路采用0.35umTSMC的MOS工艺,在3.3V的低电压下工作,模拟得到在最坏情况下,单个延迟模块的相位抖动为20ps,输出静态相位误差仅45ps。  相似文献   

16.
传统的PLL(Phase Locked Loop)电路受限于环路参数的选定,其相位噪声与抖动特性已经难以满足大阵列、高精度TDC(Time-to-Digital Converter)的应用需求.本文致力于PLL环路带宽的优化选取,采取TSMC 0.35μm CMOS工艺实现了一款应用于TDC的具有低抖动、低噪声特性的锁相环(Phase Locked Loop,PLL)电路,芯片面积约为0.745mm×0.368mm.实际测试结果表明,在外部信号源输入15.625MHz时钟信号的条件下,PLL输出频率可锁定在250.0007MHz,频率偏差为0.7kHz,输出时钟占空比为51.59%,相位噪声为114.66dBc/Hz@1MHz,均方根抖动为4.3ps,峰峰值抖动为32.2ps.锁相环的相位噪声显著降低,输出时钟的抖动特性明显优化,可满足高精度阵列TDC的应用需要.  相似文献   

17.
利用TSMC的O.18μm CMOS工艺,设计实现了单片集成的5 Gb/s锁相环型时钟恢复电路。该电路采用由半速率鉴相器、四相位环形电流控制振荡器、电荷泵以及环路滤波器组成的半速率锁相环结构。测试表明:在输入速率为5 Gb/s、长度为211-1伪随机序列的情况下,恢复出时钟的均方根抖动为4.7 ps。在偏离中心频率6MHz频率处的单边带相位噪声为-112.3 dBe/Hz。芯片面积仅为0.6mm×O.6 mm,采用1.8 V电源供电,功耗低于90 mW。  相似文献   

18.
A power and area efficient CMOS clock/data recovery circuit designed for a wide range of applications in high-speed serial data communications is described. It uses an analog phase-locked loop (PLL) to generate the high-speed clocks with an absolute rms jitter of less than 60 ps and a digital PLL which is designed to minimize chip area and power consumption to recover the clock and data signals from the incoming data stream. Fabricated in a 0.8 μm single-polysilicon, double-metal CMOS process, the digital PLL only consumes 45 mW at 125 Mb/s from a single 5 V supply, while the analog PLL consumes 92 mW. The chip area is 1.7 mm2 for the digital PLL and 0.44 mm2 for the analog PLL. It can handle an input data rate up to 280 Mb/s  相似文献   

19.
A design technique for an over-10-Gb/s clock and data recovery (CDR) IC provides good jitter tolerance and low jitter. To design the CDR using a PLL that includes a decision circuit with a certain phase margin affecting the pull-in performance, we derived a simple expression for the pull-in range of the PLL, which we call the "limited pull-in range," and used it for the pull-in performance evaluation. The method allows us to quickly and easily compare the pull-in performance of a conventional PLL with a full-rate clock and a PLL with a half-rate clock, and we verified that the half-rate PLL is advantageous because of its wider frequency range. For verification of the method, we fabricated a half-rate CDR with a 1:16 DEMUX IC using commercially available Si bipolar technology with f/sub T/=43 GHz. The half-rate clock technique with a linear phase detector, which is adopted to avoid using the binary phase detector often used for half-rate CDR ICs, achieves good jitter characteristics. The CDR IC operates reliably up to over 15 Gb/s and achieves jitter tolerance with wide margins that surpasses the ITU-T specifications. Furthermore, the measured jitter generation is less than 0.4 ps rms, which is much lower than the ITU-T specification. In addition, the CDR IC can extract a precise clock signal under harsh conditions, such as when the bit error rate of input data is around 2/spl times/10/sup -2/ due to a low-power optical input of -24 dBm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号