首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
1. The present study describes the direct labelling of A2A adenosine receptors in human neutrophil membranes with the potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4 triazolo[l,5-c]pyrimidine, ([3H]-SCH 58261). In addition, both receptor affinity and potency of a number of adenosine receptor agonists and antagonists were determined in binding, adenylyl cyclase and superoxide anion production assays. 2. Saturation experiments revealed a single class of binding sites with Kd and Bmax values of 1.34 nM and 75 fmol mg(-1) protein, respectively. Adenosine receptor ligands competed for the binding of 1 nM [3H]-SCH 58261 to human neutrophil membranes, with a rank order of potency consistent with that typically found for interactions with the A2A adenosine receptors. In the adenylyl cyclase and in the superoxide anion production assays the same compounds exhibited a rank order of potency identical to that observed in binding experiments. 3. Thermodynamic data indicated that [3H]-SCH 58261 binding to human neutrophils is entropy and enthalpy-driven. This finding is in agreement with the thermodynamic behaviour of antagonists binding to rat striatal A2A adenosine receptors. 4. It was concluded that in human neutrophil membranes, [3H]-SCH 58261 directly labels binding sites with pharmacological properties similar to those of A2A adenosine receptors of other tissues. The receptors labelled by [3H]-SCH 58261 mediated the effects of adenosine and adenosine receptor agonists to stimulate cyclic AMP accumulation and inhibition of superoxide anion production in human neutrophils.  相似文献   

2.
1. The present study describes the binding to rat striatal A2A adenosine receptors of the new potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazol o [1,5-c] pyrimidine, [3H]-SCH 58261. 2. [3H]-SCH 58261 specific binding to rat striatal membranes ( > 90%) was saturable, reversible and dependent upon protein concentration. Saturation experiments revealed that [3H]-SCH 58261 labelled a single class of recognition sites with high affinity (Kd = 0.70 nM) and limited capacity (apparent Bmax = 971 fmol mg-1 of protein). The presence of 100 microM GTP in the incubation mixture did not modify [3H]-SCH 58261 binding parameters. 3. Competition experiments showed that [3H]-SCH 58261 binding is consistent with the labelling of A2A striatal receptors. Adenosine receptor agonists competed with the binding of 0.2 nM [3H]-SCH 58261 with the following order of potency: 2-hexynyl-5'-N-ethyl carboxamidoadenosine (2HE-NECA) > 5'-N-ethylcarboxamidoadenosine (NECA) > 2-[4-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne (CGS 21680) > 2-phenylaminoadenosine (CV 1808) > R-N6-phenylisopropyladenosine (R-PIA) > N6-cyclohexyladenosine (CHA) = 2-chloro-N6-cyclopentyladenosine (CCPA) > S-N6-phenylisopropyladenosine (S-PIA). 4. Adenosine antagonists inhibited [3H]-SCH 58261 binding with the following order: 5-amino-9-chloro-2-(2-furyl)-[1,2,4]-triazolo[1,5-c] quinazoline (CGS 15943) > 5-amino-8-(4-fluorobenzyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine (8FB-PTP) = SCH 58261 > xanthine amine congener (XAC) = (E,18%-Z,82%)7-methyl-8-(3,4-dimethoxystyryl)-1,3-dipropylxanthine (KF 17837S) > 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) > or = 8-phenyltheophylline (8-PT). 5. The Ki values for adenosine antagonists were similar to those labelled with the A2A agonist [3H]-CGS 21680. Affinities of agonists were generally lower. The A1-selective agonist, R-PIA, was found to be about 9 fold more potent than its stereoisomer, S-PIA, thus showing the stereoselectivity of [3H]-SCH 58261 binding. Except for 8-PT, the adenosine agonists and antagonists examined inhibited [3H]-SCH 58261 binding with Hill coefficients not significantly different from unity. 6. The present results indicate that [3H]-SCH 58261 is the first non-xanthine adenosine antagonist radioligand which directly labels A2A striatal receptors. High receptor affinity, good selectivity and very low non-specific binding make [3H]-SCH 58261 an excellent probe for studying the A2A adenosine receptor subtype in mammalian brain.  相似文献   

3.
Alteration of ligand binding to dopamine D2 receptors through activation of adenosine A2A receptors in rat striatal membranes has been studied by means of kinetic analysis. The binding of dopaminergic agonist [3H]quinpirole to rat striatal membranes was characterized by the constants Kd = 1.50+/-0.09 nM and Bmax = 115+/-2 fmol/mg of protein. The kinetic analyses revealed that the binding had at least two consecutive and kinetically distinguishable steps, the fast equilibrium of complex formation between receptor and agonist (KA = 5.9+/-1.7 nM), followed by a slow isomerization equilibrium (Ki = 0.06). Activation of adenosine A2A receptors by CGS 21680 caused enhancement of the rate [3H]quinpirole binding, altering mainly the formation of the receptor-ligand complexes (KA) as well as the isomerization rate of this complexes (ki), while the deisomerization rate (k[-i]) and the apparent dissociation rate remained unchanged.  相似文献   

4.
The present study describes the binding to human platelet A2A adenosine receptors of the new potent and selective antagonist radioligand [3H]5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine ([3H]SCH 58261). Saturation experiments revealed that [3H]SCH 58261 labels a single class of recognition sites with high affinity (Kd = 0.85 nM), limited capacity (apparent Bmax = 85 fmol/mg of protein) and good specific binding (about 60%). [3H]SCH 58261 binding was not modulated by either the divalent cation Mg(+2) or guanine nucleotides. In competition experiments, a series of both adenosine agonists and antagonists inhibited [3H]SCH 58261 binding to A2A platelet receptors with rank order of potency and affinity similar to those observed in rat striatal membranes with the same radioligand. This confirms that the platelet A2A receptor is similar to that labeled in the brain striatum. Binding data were also found to be in good agreement with the results from functional studies such as A2A agonist-induced stimulation of adenylate cyclase or platelet aggregation inhibition. The present findings indicate that [3H]SCH 58261 is the first radioligand available for the characterization of the A2A receptor subtype in platelets.  相似文献   

5.
This study demonstrates quantification of A2A adenosine receptors (A2AAdoRs) in membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells. Radioligand binding assays were performed using the new selective A2AAdoR antagonist radioligand [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo [4,3-epsilon]-1,2,4-triazolo[1,5-c)pyrimidine ([3H]SCH58261). Binding of the radioligand to membranes was rapid, reversible, and saturable. The densities of A2AAdoRs in membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells were 900 +/- 61, 892 +/- 35, and 959 +/- 76 fmol/mg protein, respectively. Equilibrium dissociation constants (Kd values) calculated from results of saturation binding assays were 2.19, 1.20, and 0.81 nmol/L, and Kd values calculated from results of association and dissociation assays were 2.42, 1.01, and 0.40 nmol/L for [3H]SCH58261 binding to membranes prepared from porcine coronary arteries, porcine striatum, and PC12 cells, respectively. The specific binding of [3H]SCH58261 as a percentage of total binding at a radioligand concentration equal to the Kd value was 65% to 90% in the three membrane preparations. The order of ligand potencies determined by assay of competition binding to sites in porcine coronary membranes using [3H]SCH58261, unlabeled antagonists (SCH58261, 8-(3-chlorostyryl)caffeine [CSC], and xanthine amine congener [XAC]), and unlabeled agonists ([3H]2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoaden osine [CGS 21680], 2-hexynyl-5'-N-ethylcarboxamidoadenosine [HE-NECA], [3H]5'-N-ethylcarboxamidoadenosine [NECA], and R(-)N6-(2-phenylisopropyl)adenosine [R-PIA]) was SCH58261 > HE-NECA = CSC = CGS 21680 = XAC > NECA = R-PIA. The Hill coefficients of displacement by A2AAdoR ligands of [3H]SCH58261 binding were not significantly different from unity, indicating that [3H]SCH58261 bound to a group of homogeneous noninteracting sites in all membrane preparations. The order of ligand potencies to compete for [3H]SCH58261 binding sites in porcine striatal and PC12 cell membranes was, in part, different from that for porcine coronary arterial membranes. The different rank orders of potencies for agonists and antagonists at A2A receptors of porcine coronary arteries, striatum, and PC12 cells and significant differences in absolute values of potency of ligands in the three preparations may indicate the existence of different subtypes of A2AAdoRs. The antagonist radio-ligand [3H]SCH58261 should be of value for pharmacological characterization of A2A adenosine receptors in other preparations.  相似文献   

6.
This study sought to determine the potential role of nitric oxide (NO) in N-methyl-D-aspartate (NMDA)-stimulated efflux of [14C] gamma-aminobutyric acid (GABA) and [3H]acetylcholine from striatal slices in vitro. In Mg2+-free buffer, NMDA-stimulated [14C]GABA and [3H]acetylcholine release were inhibited by the guanylate cyclase inhibitor, 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and, to a lesser extent, by the nitric oxide synthase inhibitor, nitroarginine (N-Arg). Since reversal of catecholamine transporters previously has been implicated in the mechanism underlying NO-induced catecholamine release, we used the GABA transport inhibitor, 1-(2-(((diphenylmethylene)imino)oxy)ethyl)-1,2,5,6-tetrahydro-3-py ridine-carboxylic acid hydrochloride (NNC-711), to address the role of GABA transport in NArg-sensitive NMDA-induced release. NNC-711 inhibited NMDA-stimulated [14C]GABA efflux by 50%, confirming our previous report that NMDA-stimulated GABA release is partially dependent on reversal of the transporter. The effect of N-Arg in the presence of NNC-711 was similar to its effect in the absence of the transport inhibitor, suggesting that reversal of the transporter is not involved in the NO component of NMDA-stimulated [14C]GABA release. These data suggest that glutamatergic transmission through striatal NMDA receptors is partially mediated through activation of the NO/guanylate cyclase pathway and that this mechanism may contribute to the tetrodotoxin sensitivity of NMDA-induced release of GABA and acetylcholine in the striatum.  相似文献   

7.
8.
9.
We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 mM KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

10.
In order to evaluate the acute effects of two different treatments on changes in the American Urological Association symptom score, we divided 23 men with benign prostatic hyperplasia into 2 groups. Group 1 (n = 16) and group 2 (n = 7) were treated with transurethral resection of the prostate and visual laser ablation of the prostate, respectively. Twice before and about 1 week after surgery, patients completed the AUA symptom questionnaire and underwent urodynamic evaluation. The symptom indexes were subcategorized as obstructive and irritative symptoms. All symptom scores were identical in groups 1 and 2 preoperatively. Postoperatively, significant improvement was found in obstructive scores, the total score, maximum and average flow rates only in group 1. This outcome is probably the reflection of an essential dissmilarity in both therapies. Clinically, the obstructive subscore appears reactive to changes in obstruction and seems meaningful in follow-up even in the early postoperative days.  相似文献   

11.
We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors (N6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors (Ki values of 1.2 nM versus 0.8 microM). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 nM, binds only to the dopamine-rich regions of the rat brain, with a K(D) value of 1.4 (0.8-1.8) nM. The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 nM, the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H] SCH 58261 with the following estimated Ki values (nM): 2-hex-1-ynyl-5'-N-ethylcarboxamidoadenosine, 3.9 (1.8-8.4); CGS 21680, 130 (42-405); N6-cyclohexyladenosine, 9,985 (3,169-31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 microM) or Mg2+ (10 mM). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

12.
We examined the characteristics of [3H]clozapine binding sites in four rat brain regions (frontal cortex, limbic area, hippocampus and striatum) in order to elucidate the pharmacological profile of this unique atypical antipsychotic drug. The specific [3H]clozapine binding was found to be saturable and reversible in all these brain regions. Scatchard analysis of the saturation data indicated that the specific binding consisted of high- and low-affinity components. Displacement experiments showed that the muscarinic cholinergic receptor represented about 50% of [3H]clozapine binding in each brain area. Serotonin 5-HT2 and dopamine D4 receptor binding sites could also be detected by displacement experiments using ketanserin and nemonapride, respectively, in frontal cortex and limbic area, but not in hippocampus or striatum. Alpha-1, alpha-2, histamine H1, dopamine D1, D2, or D3 receptor components could not be determined within the high-affinity [3H]clozapine binding sites in any brain region. It is possible that the atypical property of clozapine may depend on the modulatory effect on dopaminergic function via 5-HT2 receptor blockade and/or may be mediated via D4 receptor blockade in the mesocortical and mesolimbic area.  相似文献   

13.
14.
Blockade of adenosine receptors can reduce cerebral infarct size in the model of global ischaemia. Using the potent and selective A2A adenosine receptor antagonist, SCH 58261, we assessed whether A2A receptors are involved in the neuronal damage following focal cerebral ischaemia as induced by occluding the left middle cerebral artery. SCH 58261 (0.01 mg/kg either i.p. or i.v.) administered to normotensive rats 10 min after ischaemia markedly reduced cortical infarct volume as measured 24 h later (30% vs controls, p < 0.05). Similar effects were observed when SCH 58261 (0.01 mg/kg, i.p.) was administered to hypertensive rats (28% infarct volume reduction vs controls, p < 0.05). Neuroprotective properties of SCH 58261 administered after ischaemia indicate that blockade of A2A adenosine receptors is a potentially useful biological target for the reduction of brain injury.  相似文献   

15.
The paper deals with methods facilitating the preparation of oncospheres of the cestode, Hymenolepis diminuta, for experimental studies. Described in detail are procedures for the infection of the definitive hosts with the oncospheres; collection and artificial hatching of oncospheres; purification of hexacanths; preparation of extracts from the hexacanths; and preparation of hexacanths for electronmicroscopic studies.  相似文献   

16.
Binding characteristics of alpha 2-adrenoceptors in rat cerebral cortical membranes were compared using the antagonist radioligands [3H]idazoxan, [3H]2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline ([3H]RX821002), and the partial agonist radioligand [125I]2-[2,6-(dichloro-4-iodophenyl)imino]imidazoline ([125I]iodoclonidine). With [3H]RX821002 and alpha 2-adrenoceptor subtype-selective competitors, both alpha 2A/D- and alpha 2C-adrenoceptor subtypes were detected, suggesting rat cortical membranes contain approximately 90% alpha 2A/D-adrenoceptor subtype and 10% alpha 2C-adrenoceptor subtype. Only alpha 2A/D-adrenoceptors were detected with [3H]idazoxan and [125I]iodoclonidine. All three radioligands bound to a single high affinity site (Kd = 0.3-1.6 nM). However, the densities of sites labeled by [3H]idazoxan and [125I]iodoclonidine were 50% greater than the density labeled by [3H]RX821002, likely representing non-adrenoceptor binding sites. The density of [125I]iodoclonidine binding sites in glycylglycine buffer was similar to that labeled by [3H]RX821002. These results suggest that: (1) alpha 2A/D-adrenoceptors are the predominant subtype in rat cerebral cortex, (2) demonstrate that the small number of alpha 2C-adrenoceptors in this tissue can be detected using prazosin to displace [3H]RX821002 binding, and (3) non-adrenoceptor binding with [125I]iodoclonidine can be minimized with the use of glycylglycine buffer.  相似文献   

17.
Certain Class III anti-arrhythmic agents have been shown to interact with human leukocytes and after antigenic and mitogenic activation. We hypothesized that a binding site for the Class III anti-arrhythmic agent, dofetilide, would exist on human leukocytes. Analysis of binding isotherms defined the presence of a single high affinity binding site on mononuclear cells and neutrophils: Kd 26+/-4 nm, Bmax 61+/-14 fmol/10( 6) cells and Kd 33+/-14 nm, Bmax 163+/-45 fmol/10(6) cells, respectively. Other Class III drugs inhibited [3H]-dofetilide binding at physiologically relevant concentrations, but the IC50 values of E4031 and quinidine were significantly higher for leukocytes than for cardiac myocytes. Interestingly, verapamil inhibited [3H]-dofetilide binding to leukocytes, but not to cardiac myocytes at physiologic concentrations (10 microM). Charybdotoxin and tetraethlyammonium inhibited [3H]-dofetilide binding to leukocytes at microM mm concentrations, respectively, however, apamin did not inhibit binding even at 1 microM concentrations. These data suggest that a Ca2+-activated K+ channel, like K(Ca) mini (apamin-insensitive isoform), is a candidate for the leukocyte [3H]-dofetilide binding site. To assess the functional significance of defetilide binding to leukocyte biology, we evaluated fMLP-stimulated superoxide production in the presence or absence of dofetilide. Dofetilide, at 30 nm suppressed of superoxide production. In conclusion, dofetilide binds to human leukocytes at physiologic concentrations and this binding alters leukocyte function possibly through interaction with a Ca2+-activated K+ channel.  相似文献   

18.
The effects of muscarinic agonist, oxotremorine (0.3 mg/kg), and antagonist, scopolamine (0.5 mg/kg), on in vivo [3H]raclopride (RAC) and [3H]N-methylspiperone (NMSP) binding were investigated. Following tracer administration to control or pretreated mice, binding potentials, and the rate constants k3 and k4 were determined by kinetic analysis. Oxotremorine resulted in a 70% increase in striatal RAC binding potential compared with controls. RAC and NMSP showed almost identical decreases in k3 (40%), whereas k4 for RAC was unexpectedly decreased by 64%. Scopolamine resulted in no significant changes in RAC or NMSP binding. These results, in combination with previous data obtained in reserpinized mice, show that 1) competition by endogenous ligand may not be the only factor influencing the magnitude of apparent in vivo receptor binding, and 2) interneuronal communication may be partly mediated by changes in the rates of ligand-receptor binding.  相似文献   

19.
PURPOSE: Both isoforms of cyclo-oxygenase, COX-1 and COX-2, are inhibited to varying degrees by all of the available nonsteroidal anti-inflammatory drugs (NSAIDs). Because inhibition of COX-1 by NSAIDs is linked to gastrointestinal ulcer formation, those drugs that selectively inhibit COX-2 may have less gastrointestinal toxicity. We measured the extent to which NSAIDs and other anti-inflammatory or analgesic drugs inhibit COX-1 and COX-2 in humans. SUBJECTS AND METHODS: Aliquots of whole blood from 16 healthy volunteers were incubated ex vivo with 25 antiinflammatory or analgesic drugs at six concentrations ranging from 0 (control) to 100 microM (n = 5 for each). Blood was assayed for serum-generated thromboxane B2 synthesis (COX-1 assay) and for lipopolysaccharide-stimulated prostaglandin E2 synthesis (COX-2 assay). In addition, gastric biopsies from the same volunteers were incubated with each drug ex vivo and mucosal prostaglandin E2 synthesis measured. RESULTS: Inhibitory potency and selectivity of NSAIDs for COX-1 and COX-2 activity in blood varied greatly. Some NSAIDs (eg, flurbiprofen, ketoprofen) were COX-1 selective, some (eg, ibuprofen, naproxen) were essentially nonselective, while others (eg, diclofenac, mefenamic acid) were COX-2 selective. Inhibitory effects of NSAIDs on gastric prostaglandin E2 synthesis correlated with COX-1 inhibitory potency in blood (P < 0.001) and with COX-1 selectivity (P < 0.01), but not with COX-2 inhibitory potency. Even COX-2 "selective" NSAIDs still had sufficient COX-1 activity to cause potent inhibitory effects on gastric prostaglandin E2 synthesis at concentrations achieved in vivo. CONCLUSION: No currently marketed NSAID, even those that are COX-2 selective, spare gastric COX activity at therapeutic concentrations. Thus, all NSAIDs should be used cautiously until safer agents are developed.  相似文献   

20.
Interaction with the exsorptive transporter P-glycoprotein (P-gp) is a possible source of peculiarities in drug pharmacokinetics, including dose-dependent absorption, drug-drug interactions, intestinal secretion, and limited permeability of the blood-brain barrier. Among the established in vitro methods of the analysis of drug interactions with P-gp, none directly quantifies the affinity of ligands with P-gp. Instead, they measure the result of a membrane permeation and a receptor-binding process; this may lead to difficulties in the interpretation of results. An assay for quantification of drug affinity to the transporter is presented on the basis of the radioligand-binding assay principle. This has the advantage of directly quantifying the interaction between drugs and P-gp. Because of the reversible and competitive interaction of numerous substrates with P-gp, a radioligand-binding assay was developed by taking [3H]verapamil and [3H]vinblastine as radioligands and the human intestinal Caco-2 cells, overexpressed with P-gp by culturing in the presence of vinblastine or transfecting with multidrug resistance gene MDR-1 as receptor preparation. The assay was performed in 96-well plates and has the potential to be used as a high-throughput method. A clear induction of the expression of P-gp was demonstrated in the Caco-2 cells grown in the presence of vinblastine, as well as in the transfected cells, although to a lesser extent. Both radioligands were shown to bind to P-gp. Verapamil was the radioligand of choice for further investigations due to its lower nonspecific binding to the transporter preparation. Kinetics as well as specificity of the binding of verapamil to the P-gp preparation were demonstrated. A two-affinity model was found to adequately describe the data derived from saturation as well as from competition experiments, in accordance with previous findings on two exsorption sites for P-gp. The binding properties of [3H]verapamil and [3H]vinblastine to a P-gp preparation derived from induced Caco-2 cells are described. The concentration-dependent displacement of the radioligand by nonlabeled substrates for P-gp should be a suitable principle for the determination of drug affinity to the respective binding sites at the human intestinal multidrug transporter P-gp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号