首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present investigation establishes a liquid processing route where thermit based reactions have been used to synthesize in-situ TiC-reinforced Fe-based composites in a single step. The main raw material used is siliceous sand, which is a waste product of aluminum extraction plants. A dispersion of TiC in Fe-based matrix has been obtained by aluminothermic reduction of siliceous sand, containing oxides of different elements like iron, titanium, silicon etc., in the presence of carbon. The reduction is highly exothermic in nature and leads to a self-propagating high-temperature synthesis (SHS) of the Fe-TiC composites. The matrix structure and volume fraction of TiC of the composites have been found to depend upon the amount of carbon added in the charge. It has been found that microstructures of Fe-TiC composites are not stable at high temperature due to the nonstoichiometric nature of TiC particles.  相似文献   

2.
Abstract

The presence of carbide particles in metal matrix composites improves abrasive wear resistance properties. Abrasive wear characteristics of TiC reinforced cast iron composites have been investigated. The TiC particle size and distribution influence the wear properties of the composites. TiC reinforced cast iron composites possess better wear resistance properties than those of chromium cast irons with and without nitrogen.  相似文献   

3.
研究了TiC/NiCrMoAlTi金属陶瓷、TiC/NiMo金属陶瓷和钢结TiC硬质合金的磨损行为,结果表明:在平稳加载条件下,金属陶瓷的耐磨性优于钢结TiC硬质合金;而在冲击载荷条件下,钢结硬质合金的室温耐磨性优于金属陶瓷,但在高温下金属陶瓷的耐磨性又转为优于钢结硬质合金,与室温相比TiC/NiCrMoAlTi和TiC/NiMo的耐磨性分别提高31%和79%,而钢结TiC硬质合金则下降52%.初步分析了不同粘结相的TiC增强复合材料的磨损机制以及加载率和温度对磨损行为的影响.TiC增强复合材料的磨损行为与其使役条件密切相关.  相似文献   

4.
不同类型颗粒混合增强铁基复合材料的磨损性能   总被引:1,自引:0,他引:1  
采用电流直加热动态热压烧结工艺制备陶瓷颗粒增强铁基复合材料,研究高体积分数(25%,30%,35%)下,单一类型颗粒(SiC,TiC,TiN)及混合类型颗粒(TiC+TiN,SiC+TiN,SiC+TiC)作为增强相对铁基复合材料磨损性能的影响。结果表明:单一类型粒子强化时,TiNP/Fe复合材料的耐磨性最好,TiCP/Fe次之,SiCp/Fe最差。混合粒子作为增强体时,(TiC+TiN)P/Fe复合材料磨损性能显著优于其对应的单一颗粒增强材料;其中粒子含量为30%时,(TiC+TiN)P/Fe复合材料磨损性能提高最大,其磨损量比TiCP/Fe降低了51.9%,比TiNp/Fe复合材料降低了44.1%,体现出可贵的混合增强价值。(SiC+TiC)_P/Fe和(SiC+TiN)P/Fe复合材料的磨损性能分别处于对应的两个单一颗粒增强材料之间。磨损表面观察表明,耐磨性好的(TiC+TiN)P/Fe复合材料的磨损机理为磨粒磨损,而(SiC+TiC)_P/Fe和(SiC+TiN)P/Fe复合材料除磨粒磨损外还存在明显的疲劳磨损现象。  相似文献   

5.
以纳米管(MWCNTs)和纯钛为原料,用微波烧结法原位合成TiC增强钛基复合材料,研究了这种材料的组织和性能并探讨了TiC增强相的生成机理.结果 表明,微波烧结时MWCNTs与Ti原位生成TiC增强相.MWCNTs的添加量(质量分数,下同)低于1%时TiC呈现颗粒状且分布均匀,Ti基体致密;MWCNTs的添加量高于1....  相似文献   

6.
The microstructural response of iron-carbon-TiC components produced by a liquid route to changes in cooling conditions and post-solidification heat treatments has been investigated. Heat treatments of pure Fe-TiC composite materials have been found to produce only minor changes in the TiC morphology and distribution with reduction in hardness resulting from some TiC precipitation and depletion of the iron matrix of titanium and carbon. As-cast composites containing Fe-2.4% C/10% TiC and Fe-3.27% C/10% TiC exhibit a white cast iron matrix containing dispersed TiC. Subsequent heat treatment of this material at 750° C renders the matrix malleable, replacing the cementite by free graphite with no apparent alteration to the TiC morphology or distribution.  相似文献   

7.
为表征颗粒增强钛基复合材料在恶劣的磨粒磨损条件下的磨损行为,对熔铸法制备的TiCP/Ti6Al4V进行了磨粒磨损条件下的耐磨性试验,并利用SEM、EDX等技术分析了复合材料的磨损过程及磨损机制.研究表明:TiCP/Ti6Al4V复合材料的抗磨粒磨损性能,总体上随TiC颗粒体积分数的增加而提高,载荷越大、磨损时间越长,复合材料越容易表现出优异的耐磨性能;TiC的形态影响着耐磨性的提高,细小颗粒状或羽毛状TiC单位体积增加对耐磨性的贡献,比枝晶状TiC单位体积增加对耐磨性的贡献大约3.5倍;复合材料在磨损初始阶段,其磨损机制以形成犁削和磨沟为主,形成一次磨屑,随着增强相含量的提高,一次磨屑逐步减少,磨损以犁沟和剥层磨损为主,需要磨粒的反复作用才能形成磨屑,因此,耐磨性得到提高.  相似文献   

8.
Three types of in-situ TiC(5 vol%,10 vol% and 15 vol%) reinforced high entropy alloy CoCrFeNi matrix composites were produced by vacuum induction smelting.The effect of two extreme cooling conditions(i.e.,slow cooling in fu rnace and rapid cooling in copper crucible) upon the microstructure and mechanical properties was examined.In the case of slow cooling in the furnace,TiC was found to form mostly along the grain boundaries for the 5 vol% samples.With the increase of TiC reinforcements,fibrous TiC appeared and extended into the matrix,leading to an increase in hardness.The ultimate tensile strength of the composites shows a marked variation with increasing TiC content;that is,425.6 MPa(matrix),372.8 MPa(5 vol%),550.4 MPa(10 vol%) and 334.3 MPa(15 vol%),while the elongation-to-failure(i.e.,ductility) decreases.The fracture pattern was found to transit from the ductile to cleavage fracture,as the TiC content increased.When the samples cooled rapidly in copper crucible,the TiC particles formed both along the grain boundaries and within the grains.With the increase of TiC volume fraction,both the hardness and ultimate tensile strength of the resulting composites improved steadily while the elongation-to-failure declined.Therefore,the fast cooling can be used to drastically improve the strength of in-situ TiC reinforced CoCrFeNi.For example,for the 15 vol% TiC/CoCrFeNi composite cooled in the copper crucible,the hardness and ultimate tensile strength can reach as high as 595 HV and 941.7 MPa,respectively.  相似文献   

9.
为了细化TiC/Al基复合材料中的增强颗粒,进一步提高TiC颗粒对基体的强化效果,在锻铝6A02基体中加入适量Mo元素,用原位合成的方法制备TiC/Al基复合材料.对制备得到的铸态和轧制态材料进行了显微组织观察、拉伸和磨损实验.结果表明,TiC颗粒可以作为异质形核核心起到细化基体组织的作用.TiC颗粒的引入提高了材料在室温和高温的抗拉强度和屈服强度,同时改善了材料的耐磨损性能,且随着载荷的增加,耐磨性能的提高越明显.当加入质量分数1.0%的Mo时,可改善基体对TiC颗粒的润湿性,细化TiC颗粒的尺寸(0.5μm),使TiC颗粒分布更为均匀,材料的力学性能和磨损性能得到提高.然而,过高的Mo含量将导致在组织中出现粗大的脆性Al5Mo相,同时使材料的力学性能和磨损性能有所降低.  相似文献   

10.
采用高能球磨和真空烧结的方法制备TiC增强高铬铸铁(HCCI)基复合材料。利用SEM,DSC等方法对不同球磨时间的粉末进行分析,研究不同烧结温度对高铬铸铁基复合材料的显微组织、硬度及密度的影响,比较相同工艺下复合材料与高铬铸铁材料的耐磨性。结果表明:球磨12 h后的粉末颗粒大小趋于稳定,粉末活性提高,烧结性能改善,烧结试样中TiC均匀地分布在基体中。随着烧结温度的升高,复合材料内部晶粒逐渐长大,密度和硬度逐渐提高。在1280℃超固相线液相烧结的条件下烧结2 h后,致密度达94.17%,硬度和抗弯强度分别为49.2HRC和980 MPa。在销盘磨损实验中复合材料的耐磨性为单一高铬铸铁材料的1.52倍,磨损机制为磨粒磨损+轻微氧化磨损。  相似文献   

11.
TIC/7075铝基复合材料的磨损实验研究   总被引:1,自引:0,他引:1  
刘慧敏  宋振东  许萍  张晶 《材料工程》2011,(7):66-69,74
采用原位反应喷射沉积法制备TiC/7075铝基复合材料,并在销一盘式磨损机损上进行摩擦磨损实验研究.通过TEM观察原位TiC颗粒的分布与形貌,并利用SEM观察沉积态组织磨损表面形貌.结果表明:复合材料的耐磨性和TiC颗粒含量及载荷有关,在低载荷(8.9N)状态下,材料的耐磨性随TiC颗粒含量的增加而增强,在高载荷(26...  相似文献   

12.
《Advanced Powder Technology》2021,32(10):3635-3649
Al matrix composites have attracted significant attention of researchers in recent years due to their lightweight, excellent mechanical and tribological properties. In this study, an Al2024 matrix hybrid composite (AMHC) reinforced with both TiC nanoparticles and graphene nanoplatelets (GNPs) was produced via a route of powder metallurgy. And its microstructure, microhardness and tribological properties are compared with those of unreinforced Al2024 alloy matrix and Al2024 matrix composites reinforced with either only TiC or GNPs. It was found that the distribution of Al2Cu, TiC nanoparticles and GNPs in the matrix and the wear resistance are significantly improved when introducing both TiC nanoparticles and the GNPs. The wear mechanisms change from the adhesion-dominant wear for Al2024 and the other singly reinforced composites into abrasive-dominant wear for the hybrid composite. The significantly improved wear resistance of the AMHC is attributed to the synergistic effects of reinforcing and self-lubricating of the TiC and GNPs.  相似文献   

13.
TiCp/ZA-12复合材料磨损行为的研究   总被引:3,自引:0,他引:3  
采用XD^TM与搅拌铸造技术相结合的工艺制备TiCp/ZA-12复合材料。利用MM-200摩擦磨损测试仪测试干摩擦条件下这种复合材料的磨损性能。研究了TiC颗粒含量、应用载荷和滑动距离对其磨损程度的影响。结果表明:复合材料的磨损率低于基体合金磨损率,且磨损率随TiC颗粒含量的增加而减小;增大应用载荷和滑动距离,并且复合材料和基体ZA-12合金的磨损程度均增加,但复合材料的增幅明显偏小。同时发现,在磨损过程中存在瞬变载荷,当应用载荷低于瞬变载荷时,磨损表现为微磨损,当高于瞬变载荷时为剧烈磨损,复合材料的瞬变载荷比基体合金高得多。最后分析了复合材料和基体合金的磨面形貌。  相似文献   

14.
The AZ91 metal matrix composites (MMCs) reinforced with 5, 10 and 15 wt.% TiC particulates are fabricated by TiCp–Al master alloy process combined with mechanical stirring. The effects of TiC particulate content, applied load and wearing time on the sliding wear behaviors of the composites were investigated using MM-200 wear testing apparatus. The results show that the wear resistance and friction coefficient of the composites increased and decreased with increase of the TiC particulate content, respectively. The wear volume loss and friction coefficient of the reinforced composites as well as the unreinforced AZ91 matrix alloy increased with increase of applied load or wearing time, but the increase rates of the reinforced composites in two performance is lower than those of the unreinforced AZ91 matrix alloy. Furthermore, the sliding wear behavior of the composites and the unreinforced AZ91 matrix alloy is characterized by ploughing, adhesion and oxidation abrasion.  相似文献   

15.
TiC reinforced 7075 Al matrix composites have been fabricated by a melt in-situ reaction spray deposition. The microstructures of spray-deposited alloys were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry sliding wear behavior of the alloys was investigated using a pin-on-disc machine under four loads, namely 8.9, 17.8, 26.7 and 35.6 N. It has been found that the wear behavior of the alloys was dependent on the TiC content in the microstructure and the applied load. At a lower load (8.9 N), with increasing TiC content, the wear rate of the alloy was decreased. At a higher loads (26.7, 35.6 N), a spray-deposited 7075 Al alloy exhibited superior wear resistance to the 7075/TiC composites.  相似文献   

16.
Abstract

Carbide reinforced steel composites are useful in extensive wear resistance applications. Titanium carbide reinforced steel composites have been prepared by dissolving a TiC rich Fe–TiC master alloy in a liquid steel. The composites have been characterised by optical microscopy, energy dispersive X-ray scanning electron microscope analysis, image analysis, and X-ray diffraction studies. Tensile strength measurements showed that the ultimate tensile strengths varied between 790 and 880 MPa for composites containing 0·7–0·34 wt-%Ti. Some composites show better wear resistance properties in comparison with low alloy steels.  相似文献   

17.
New wear-resistant material: Nano-TiN/TiC/TiNi composite   总被引:3,自引:0,他引:3  
Near-eqiatomic TiNi alloy has been found to exhibit high resistance to wear, especially to erosion. The high wear resistance of the alloy may largely benefit from its pseudoelasticity. Recent studies demonstrate that the wear resistance of TiNi alloy can be considerably enhanced when hard particles such as TiC were added as a reinforcing phase. It was expected that the wear resistance of such a composite could be further improved if the TiNi matrix can be strengthened with retained pseudoelasticity. Attempt was made to develop such a tribo composite, using nano-TiN powder to strengthen the matrix of the TiC/TiNi composite. The composite was made using a vacuum sintering process. Sliding wear behavior of this material was evaluated. It was demonstrated that the nano-TiN/TiC/TiNi composite exhibited excellent wear resistance, superior to those of the TiC/TiNi composite and WC/NiCrBSi hardfacing overlay. In order to understand the role of the nano-TiN powder, localized mechanical behavior and micro-scale wear of the TiNi matrix with and without nano-TiN powder were investigated using a triboscope. Worn surfaces were examined using SEM to better understand the wear mechanism and to find out clues for further development.  相似文献   

18.
The effect of size of silicon carbide particles on the dry sliding wear properties of composites with three different sized SiC particles (19, 93, and 146 μm) has been studied. Wear behavior of Al6061/10 vol% SiC and Al6061/10 vol% SiC/5 vol% graphite composites processed by in situ powder metallurgy technique has been investigated using a pin-on-disk wear tester. The debris and wear surfaces of samples were identified using SEM. It was found that the porosity content and hardness of Al/10SiC composites decreased by 5 vol% graphite addition. The increased SiC particle size reduced the porosity, hardness, volume loss, and coefficient of friction of both types of composites. Moreover, the hybrid composites exhibited lower coefficient of friction and wear rates. The wear mechanism changed from mostly adhesive and micro-cutting in the Al/10SiC composite containing fine SiC particles to the prominently abrasive and delamination wear by increasing of SiC particle size. While the main wear mechanism for the unreinforced alloy was adhesive wear, all the hybrid composites were worn mainly by abrasion and delamination mechanisms.  相似文献   

19.
近年来,陶瓷颗粒非均匀分布增强钢铁基复合材料(构型复合材料)由于具有优异的耐磨性,成为国内外高性能耐磨材料研究和应用的热点.对构型复合材料耐磨性的研究进行了综述,认为在无冲击磨料磨损工况下,构型复合材料的耐磨性显著高于常规陶瓷颗粒均匀分布增强复合材料,其耐磨性顺序按照基体排列为:高铬铸铁基>合金钢基>高锰钢基复合材料;...  相似文献   

20.
WC颗粒增强铁基复合材料的性能研究   总被引:10,自引:1,他引:9  
通过离心法制备了外径290mm,内径130mm,高72mm,WCp/Fe-C复合材料工作层厚度25~30mm的厚壁环形试样.通过光镜、扫描电镜和性能试验设备研究了两种不同WCp体积分数WCp/Fe-C复合材料的力学性能、耐磨损性能和抗热疲劳性能,并与硬质合金和高铬铸铁进行比较.结果表明WCp体积分数在80%和65%左右的两种WCp/Fe-C复合材料,其抗拉强度达到了320和348MPa,冲击韧性均>4J/cm^2,硬度为HRC63.5和HRC61.5.20和40N载荷下的耐磨性分别达到208.33、90.91和127.06、57.14,抗热疲劳性能优良.与硬质合金和高铬铸铁相比,WCp/Fe-C复合材料的冲击韧性、抗热疲劳性能以及20和40N载荷下的耐磨性均有大幅度提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号