首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work has proved that a good combination of a simple and fast metal pre-treatment, followed by the deposition of a thin layer of an organic–inorganic silane coating and further layer of epoxy coatings, are able to protect the aluminium alloy AA2024-T3 against corrosion in high concentrations of NaCl solution. The alloy AA2024 is one of the most employed aluminium alloy in structural applications due to its good mechanical properties. However, AA2024 alloy series commonly presents galvanic corrosion due to the rich content of copper element. The influence of different surface pre-treatments, the presence of a silane layer as pre-coating treatment and the influence of phosphonic acids combined with the silane layer on the corrosion protection and adhesion to the aluminium alloy have been examined using accelerated corrosion tests. High roughness and the presence of a pre-coating film between the metal surface and the organic coating were essential for a good protection and resistance to blistering appearance in the surface of AA2024-T3.  相似文献   

2.
The corrosion resistance of AA 2024-T3 and hot-dip galvanized steel (HDG) was studied after treatment with bis-[3-(triethoxysilyl)propyl]tetrasulfide (bis-sulfur silane), bis-[trimethoxysilylpropyl]amine (bis-amino silane), and their mixture. Electrochemical tests in neutral 0.6 M NaCl as well as scanning electronic microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) were performed. The results showed that: (1) hydrophilic bis-amino silane did not offer good corrosion protection on either of the metals. This is probably because the bis-amino silane film tends to be positively charged. This promotes ingress of anions like Cl ions as well as water into the film by electrostatic attraction. As a result, corrosion readily proceeds at the interface. (2) Hydrophobic bis-sulfur silane performed very well on AA 2024-T3, but failed on HDG. The failure here stems from non-uniform film coverage on HDG owing to an insufficient wetting of bis-sulfur silane solution on the Zn oxide on HDG. Local corrosion initiates at defective sites which are poorly covered by the silane film. (3) A bis-sulfur/bis-amino mixture at the ratio of 3/1 greatly enhanced the corrosion resistance of both AA 2024-T3 and HDG. This substantial improvement is achieved by selectively overcoming the major shortcomings of the individual silanes.  相似文献   

3.
This paper describes the elaboration of 3-glycidoxypropyltrimethoxysilane (3-GPTMS) films onto AA2024-T3 aluminum alloy for corrosion protection.The dependence of sol–gel morphology on both precipitation under cathodic polarization and nitrate incorporation was investigated via scanning electron microscopy (SEM).Once added into silanization solution, sodium nitrate promoted the reaction of silane condensation and enhanced the film compactness.Electrochemical impedance spectroscopy results (EIS) indicated that doping silane film with NaNO3 ameliorated its barrier property and protectiveness. Silane films applied onto AA2024-T3 surface by using potentiostatic method, exhibited obviously higher corrosion resistance than those obtained by conventional “dip-coating” method. The resistance of coating is accentuated when not very negative potential was applied.  相似文献   

4.
Thin films of organosilanes have been successfully used as the alternative to toxic chromate coatings for surface pretreatment of metals and alloys. To further improve their corrosion performance, in the present work nano-scaled TiO2 particles were added to the dodecyltrimethoxysilane (DTMS) films coated onto AA2024-T3 substrates, by using either the dip-coating or the cathodically electro-assisted deposition process. The obtained composite films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle measurements, Fourier transform reflection-absorption IR (FTRA-IR) and electrochemical impedance spectroscopy (EIS). The results show that these two techniques (nanoparticles incorporation and the electro-assisted deposition) both facilitate the deposition process of silane films, giving thicker deposit and higher coverage surface along with higher roughness and hydrophobicity, and thereby improve their corrosion resistance. Moreover, the corrosion performance of silane films is further improved by the combined use of nanoparticles modification and electro-assisted deposition.  相似文献   

5.
Bis-[triethoxysilylpropyl]tetrasulfide (or bis-sulfur silane) and bis-[trimethoxysilylpropyl] amine (or bis-amino silane) were deposited on 2024-T3 aluminum alloy (AA 2024-T3). The structures of the films were characterized using Fourier-transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS) techniques. The results showed that: (1) The silane structures were affected significantly by the hydrolysis time of the silane solutions. A minimum hydrolysis time is required to obtain a crosslinked silane film. (2) Hydrolysis progressed more readily and faster in the bis-amino silane system than in the bis-sulfur silane system, probably due to the catalytic action of the amine of the bis-amino silane. (3) Both silane systems experienced significant crosslinking upon curing at 100°C, during which denser interfacial layers were formed via crosslinking in the interfacial regions. The interfacial layer contributes to corrosion protection of metals by silanes. (4) A new phase was observed in the fully cured bis-amino silane film after aging in the atmosphere. This new phase is likely to be carbamates and bicarbonates formed via a reaction between the secondary amino groups, carbon dioxide, and moisture absorbed from the atmosphere.  相似文献   

6.
Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles.The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements.The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3.  相似文献   

7.
In this paper, three types of protective silane films, methyltrimethoxysilane (MTMS), vinyltrimethoxysilane (VTMS) and dodecyltrimethoxysilane (DTMS) were prepared on aluminum alloys AA 2024-T3 by electrodeposition technique. The Reflection-Absorption Fourier Transform IR (FTRA-IR) measurements showed that, the silane films were successfully deposited through chemical bonding between silane agents and Al alloys. Electrochemical impedance spectroscopy (EIS) tests indicated that in comparison with those by conventional “dip-coating” method, silane films electrochemically prepared at cathodic potentials exhibited obviously higher corrosion resistances. “Critical potential” was all observed for each silane system. Silane films prepared at this potential performed the highest corrosion resistance. The scanning electron microscopy (SEM) images indicated a potential dependence of surface morphology of silane films. The highest compactness was obtained at the “critical potential”. Due to the presence of long hydrophobic dodecyl chain in bone structure, DTMS films displayed the highest barrier properties.  相似文献   

8.
The corrosion resistance behavior of organically modified silane (Ormosil) thin films on 2024-T3 aluminum alloy substrates was investigated using electrochemical impedance spectroscopy (EIS) and accelerated salt spray analysis techniques. Coatings were prepared containing 0–16.6 vol.% alkyl-modified silane, Xn---Si(OR)4−n, where X=methyl, dimethyl, n-propyl, n-butyl, i-butyl, n-hexyl, n-octyl, or i-octyl. Coating thicknesses were measured to be in the 6–16 μm range, with the thickest coatings being observed for the highest concentrations of alkyl-modified silane. Contact angle measurements showed an enhancement in hydrophobicity of the Ormosil film imparted by increasing size and concentration of the alkyl-modifiers in the coating. In general, corrosion resistance characteristics, as determined using EIS and salt spray techniques, were found to increase with increasing alkyl-modified silane concentration and alkyl chain length. The best overall corrosion resistance was observed for coating systems containing ≥10.4 vol.% alkyl-modified silane; the hexyl-modified films exhibited corrosion resistance properties superior to the other Ormosil coatings. Immersion studies conducted in 0.5 M K2SO4 indicated that coating degradation occurs via hydration of the dense linear chain silicate network leading to the formation of porous cyclic structures.  相似文献   

9.
Chemical formulations based on silane solutions are currently used for the pre-treatment of metallic substrates. These pre-treatments provide corrosion protection of the metallic substrates due to the good barrier properties of the silane films that form on the surface. The corrosion protection of silane-based pre-treatments can be improved by adding dopants to the silane solutions. The dopants must present corrosion inhibition properties and must keep or improve the barrier properties of the silane film without modification of surface functionality and bulk properties.  相似文献   

10.
The present work investigates the electrochemical behaviour of galvanised steel substrates pre-treated with bis-[triethoxysilylpropyl] tetrasulfide silane (BTESPT) solutions modified with SiO2 or CeO2 nanoparticles activated with cerium ions. The electrochemical behaviour of the pre-treated substrates was evaluated via electrochemical impedance spectroscopy in order to assess the role of the nanoparticles in the silane film resistance and capacitance. The ability of the Ce-activated nanoparticles to mitigate corrosion activity at the microscale level in artificial induced defects was studied via scanning vibrating electrode technique (SVET). Complementary studies were performed using potentiodynamic polarisation. The results show that the presence of nanoparticles reinforces the barrier properties of the silane films and that a synergy seems to be created between the activated nanoparticles and the cerium ions, reducing the corrosion activity. The addition of CeO2 nanoparticles was more effective than the addition of SiO2 nanoparticles.  相似文献   

11.
Interactions occurring at the interface between injection-molded poly (vinyl chloride) (PVC) and steel substrates that were coated with thin films of aminosilanes were investigated by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The silane films were formed by adsorption of γ-aminopropyltriethoxysilane (γ-APS) or N-(2-aminoethyl-3-aminopropyl)trimethoxysilane (γ-AEAPS) from 2% aqueous solutions onto polished steel substrates. PVC was injection molded onto the silane-primed steel substrates and annealed at temperatures up to 170°C for times as long as 30 min. PVC was peeled off of the primed steel substrates using a 90° peel test and the substrate failure surfaces were thoroughly rinsed with tetrahydrofuran (THF) and distilled water to remove PVC and other compounds that were not strongly bonded to the substrates. The PVC failure surfaces were characterized by attenuated total reflection infrared spectroscopy (ATR) and PVC rinsed off of the substrate failure surfaces was characterized by transmission infrared spectroscopy. The resulting transmission and ATR spectra showed an absorption band near 1650 cm-1 that was attributed to unsaturation in PVC. The substrate failure surfaces were characterized by XPS; curve-fitting of N(1s) and Cl(2p) high-resolution spectra showed the formation of amine hydrochloride complexes by protonation of amino groups of the silanes with HCl that was liberated from PVC during the onset of thermal dehydrochlorination. Furthermore, quaternization or nucleophilic substitution of labile pendent allylic chloride groups by amino groups on the silanes took place, thus grafting PVC onto the aminosilanes. It was determined that PVC that had β-chloroallyl groupings along its chains showed better adhesion with steel primed with aminosilanes and that generation of allylic chloride groups in PVC chains was the rate-limiting step in the reaction between PVC and aminosilane. Moreover, the effect of crosslinking of silane films on adhesion between PVC and aminosilane primed steel was investigated and it was concluded that interdiffusion of the polymer phase and the silane phase was also critical in obtaining good adhesion.  相似文献   

12.
This work investigates the protective behaviour of bis-[triethoxysilylpropyl] tetrasulfide silane pre-treatments on the AZ31 Mg alloy. The silane solution was modified by the addition of cerium nitrate or lanthanum nitrate in order to introduce corrosion inhibition properties in the silane film.The corrosion behaviour of the pre-treated AZ31 magnesium alloy was studied during immersion in 0.005 M NaCl solution, using electrochemical impedance spectroscopy and the scanning vibrating electrode technique (SVET). The electrochemical experiments showed that the presence of cerium ions or lanthanum ions improve the protective behaviour of the silane film. The SVET experiments evidenced that the presence cerium in the silane film led to an important reduction of the corrosion activity.The results demonstrate that either cerium ions or lanthanum ions can be used as additives to the silane solutions to improve the performance of the pre-treatments for the AZ31 magnesium alloy.  相似文献   

13.
The present work aims at assessing the electrochemical behaviour of galvanised steel (GS) substrates pre-treated with bis-[triethoxysilylpropyl] tetrasulfide silane (BTESPT) doped with cerium nitrate. Furthermore, the work aims at evaluating the self-healing properties of the dopant and discussing the possible mechanisms involved in this process. The study was performed by electrochemical impedance spectroscopy (EIS) and by the scanning vibrating electrode technique (SVET), during immersion in NaCl solutions. X-ray photoelectron spectroscopy (XPS) was also used to complement the electrochemical results. The results show that the protective behaviour of the pre-treatments based on Ce-doped silane solutions is dependent on the concentration of the dopant. The results also show that the dopant improves the anti-corrosion performance of the silane coatings formed on galvanised steel substrates.  相似文献   

14.
Silane based products are becoming an interesting material for pre-treatment deposition, because, for the environmental compatibility, they can be used as substitutes of traditional pre-treatments like chromates. Silanes have been studied as new pre-treatments before organic coating deposition for many different metals, including aluminium, copper and zinc.In this work, some results concerning the properties of water-based silane pre-treatments on galvanized steel will be presented.Galvanized sheets obtained by continuous hot dip process were considered. A silane based bath containing a mixture of three different silanes were used for the pre-treatment deposition (Glycidoxypropiltrimethoxysilane, Tetraethoxysilane and Methyltriethoxysilane).The obtained pre-treatments were characterized by SEM observations, FT-IR and ToF-Sims analysis. The corrosion protection properties of the pre-treated galvanized samples were studied using industrial accelerated tests (like salt spray exposure) and electrochemical measurements (polarization curves and electrochemical impedance spectroscopy (EIS) measurements), as a function of the different curing conditions. The pre-treated galvanized sheets were further coated with an epoxy-polyester powder coating, in order to verify the adhesion promotion properties and the corrosion protection performances of the complete protective system.The coated samples were characterized by EIS measurements with artificial defect in order to study the interfacial stability (adhesion) in wet conditions and monitor the coating delamination.The electrochemical data were compared with adhesion measurements obtained by cathodic delamination tests. The electrochemical tests showed that the silane layer acts not only as a coupling agent between the inorganic substrate and the organic coating, but it also ensures a good barrier effect against water and oxygen.  相似文献   

15.
The present work aims at evaluating the corrosion resistance of 316L stainless steel pre-treated with an organic–inorganic silane hybrid coating. The latter was prepared via a sol–gel process using 3-glycidoxypropyl-trimethoxysilane as a precursor and bisphenol A as a cross-linking agent. The corrosion resistance of the pre-treated substrates was evaluated by neutral salt spray tests, linear sweep voltammetry and electrochemical impedance spectroscopy techniques during immersion in a 3.5% NaCl solution. In addition, the effect of the drying method as an effective parameter on the microscopic features of the hybrid coatings was studied using Fourier transform infrared spectroscopy and scanning electron microscopy. Results show that the silane hybrid coatings provide a good coverage and an additional corrosion protection of the 316L substrate.  相似文献   

16.
The present work aims at evaluating the corrosion resistance of 316L stainless steel pre-treated with an organic–inorganic silane hybrid coating. The latter was prepared via a sol–gel process using 3-glycidoxypropyl-trimethoxysilane as a precursor and bisphenol A as a cross-linking agent. The corrosion resistance of the pre-treated substrates was evaluated by neutral salt spray tests, linear sweep voltammetry and electrochemical impedance spectroscopy techniques during immersion in a 3.5% NaCl solution. In addition, the effect of the drying method as an effective parameter on the microscopic features of the hybrid coatings was studied using Fourier transform infrared spectroscopy and scanning electron microscopy. Results show that the silane hybrid coatings provide a good coverage and an additional corrosion protection of the 316L substrate.  相似文献   

17.
Quasicrystals belong to a particular type of solids, which consist of highly symmetric atom clusters. The structure is neither periodically ordered, as in crystalline materials, nor amorphous, as in a glass. Recent work has shown that thin film quasicrystal coatings can have unique properties such as very high electrical and thermal resistivities and very low surface energy, which may result in interesting corrosion properties. For example, aluminum alloy based quasicrystals are insulator alloys containing about 70% of aluminum. Other interesting properties involving, for instance, adhesion, corrosion, friction, and hardness suggest that quasicrystal coatings are promising materials for a variety of industrial applications.

The corrosion related properties of aluminum alloy based quasicrystal thin film coatings have been studied on coated AA2024 substrates. The thin film deposition parameters are briefly discussed. Results of the microstructural, surface chemistry, and surface energy analysis of the quasicrystal films are presented. The corrosion protection properties of the films have been studied by potentiodynamic scan and electrochemical impedance spectroscopy. Analysis of the electrochemical data indicates that nanostructured quasicrystal films significantly resist corrosion of AA2024-T3 substrates in a constant immersion environment.  相似文献   


18.
Bis-1,2-[triethoxysilylpropyl]tetrasulfide silane films containing CeO2·ZrO2 nanoparticles were deposited by dip-coating on galvanised steel substrates. The morphological features of the coated substrates were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The anti-corrosion performance of the modified silane film applied on galvanised steel substrates was studied by electrochemical impedance spectroscopy (EIS). The ability of nanoparticles to mitigate localized corrosion activity at artificially induced defects was investigated via the scanning vibrating electrode technique (SVET) and by the scanning ion-selective electrode technique (SIET). The results showed that the addition of nanoparticles provides good corrosion protection of the galvanised steel substrates pre-treated with the modified silane solutions. The corrosion activity was reduced by more than one order of magnitude. Complementary d.c. experiments, using zinc electrodes exposed to NaCl solutions containing the nanoparticles were also performed in order to better understand the role of the nanoparticles. An ennoblement of the corrosion potential and polarisation of the anodic reactions could be detected.  相似文献   

19.
This article reports on a comparative study on the corrosion resistance of low-carbon steel substrates pretreated with different silane solutions and painted. The pure silanes used to pretreat the steel panels were 3-aminopropyltriethoxysilane (γ-APS), 3-glycidoxypropyltrimethoxysilane (γ-GPS), and bis(3-triethoxysilylpropyl)amine. The study also considered other silane solutions with ureido, amino, and epoxy organofunctional groups, and two bis-functional silanes: bis(γ-trimethoxysilylpropyl)amine (BAS) and 1,2-bis(triethoxysilyl)ethane (BTSE). A conventional phosphate-type pretreatment was also applied for reference purposes. The pretreated panels were then finished with an alkyd/polyester aminoplast base paint. As a branch test, an acrylic/urethane paint was also applied. Different tests were conducted to evaluate the anticorrosive ability of the different silane/paint systems: outdoor exposure in an atmosphere of moderate aggressivity; accelerated corrosion test (salt fog test); and electrochemical impedance spectroscopy (EIS). The results show that the steel pretreated with certain silanes, especially γ-APS, yields similar results to steel subjected to conventional phosphate pretreatment.  相似文献   

20.
The mechanisms of corrosion inhibition of AA2024-T3 by vanadates were studied in this work using the split cell technique and polarization curves. The electrochemical behavior of clear solutions containing metavanadates and orange solutions containing decavanadates was clearly distinctive. Injection of metavanadates to the cathode side of the different split cell setups greatly reduced the galvanic current, indicating a potent inhibition of the oxygen reduction kinetics. The galvanic current never exhibited a transient current peak, suggesting that metavanadates inhibit AA2024-T3 corrosion by a mechanism that does not involve electrochemical reduction. Injection of metavanadate to the anode side of the different split cells had no effect on the galvanic current. Injection of orange decavanadate to the cathode side of the AA2024-T3 split cell resulted in a large current peak, associated with the electrochemical reduction of decavanadate. However, decavanadates did not impart significant corrosion protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号