首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于神经网络的多示例回归算法   总被引:2,自引:0,他引:2       下载免费PDF全文
张敏灵  周志华 《软件学报》2003,14(7):1238-1242
通过重新定义全局误差函数,提出了一种基于神经网络的多示例回归算法,并在基准数据集上对该算法进行了测试,取得了较好的效果.  相似文献   

2.
在医疗环境中病员在室内停留的时间占全天的80%以上,因此开展室内空气质量的研究对病员康复具有重要意义。现有的PM_(2.5)预测方法主要存在两个问题:样本采集粒度与预测粒度不一致;对室内PM_(2.5)预测的相关特征研究不足。对此提出一种基于多示例遗传神经网络的PM_(2.5)预测方法。利用多示例机制有效解决采样间隔与预测时间的平衡问题,并引入与室内环境质量密切相关的通风率特征。以空气质量敏感的医疗单位中采集的实际数据进行验证。实验结果表明,该方法的相对误差为5.60%,比传统遗传神经网络降低7.55%,比支持向量回归方法降低5.98%,比随机森林方法低8.36%,比线性回归低7.66%,比决策树低14.69%,比LASSO回归低8.21%。  相似文献   

3.
邓波  陆颖隽  王如志 《计算机科学》2017,44(3):264-267, 287
在多示例学习(MIL)中,包是含有多个示例的集合,训练样本只给出包的标记,而没有给出单个示例的标记。提出一种基于示例标记强度的MIL方法(ILI-MIL),其允许示例标记强度为任何实数。考虑到基于梯度训练神经网络方法的计算复杂性和ILI-MIL目标函数的复杂性,利用基于化学反应优化的高阶神经网络来实现ILI-MIL,学习方法具有较强的非线性表达能力和较高的计算效率。实验结果表明,该算法比已有算法具有更加有效的分类能力,且适应范围更广。  相似文献   

4.
多示例多标签学习是一种新型的机器学习框架。在多示例多标签学习中,样本以包的形式存在,一个包由多个示例组成,并被标记多个标签。以往的多示例多标签学习研究中,通常认为包中的示例是独立同分布的,但这个假设在实际应用中是很难保证的。为了利用包中示例的相关性特征,提出了一种基于示例非独立同分布的多示例多标签分类算法。该算法首先通过建立相关性矩阵表示出包内示例的相关关系,每个多示例包由一个相关性矩阵表示;然后建立基于不同尺度的相关性矩阵的核函数;最后考虑到不同标签的预测对应不同的核函数,引入多核学习构造并训练针对不同标签预测的多核SVM分类器。图像和文本数据集上的实验结果表明,该算法大大提高了多标签分类的准确性。  相似文献   

5.
6.
基于流形学习的多示例回归算法   总被引:2,自引:0,他引:2  
詹德川  周志华 《计算机学报》2006,29(11):1948-1955
多示例学习是一种新型机器学习框架,以往的研究主要集中在多示例分类上,最近多示例回归受到了国际机器学习界的关注.流形学习旨在获得非线性分布数据的内在结构,可以用于非线性降维.文中基于流形学习技术,提出了用于解决多示例同归问题的Mani MIL算法.该算法首先对训练包中的示例降维,利用降维结果出现坍缩的特性对多示例包进行预测.实验表明,Mani MIL算法比现有的多示例算法例如Citation-kNN等有更好的性能.  相似文献   

7.
基于遗传算法的示例学习系统的并行实现   总被引:2,自引:0,他引:2  
示例学习的目标即是寻找最优覆盖规则,而这已被证明为NP难题。本文提出利用遗传算法来寻求最优覆盖规则的算法,并在并行设计环境Multi-pascal中加以实现  相似文献   

8.
多数多标记学习方法通过在输出空间中,单示例同时与多个类别标记相关联表示多义性,目前有研究通过在输入空间将单一示例转化为示例包,建立包中多示例与多标记的联系。算法在生成示例包时采用等权重平均法计算每个标记对应样例的均值。由于数据具有局部分布特征,在计算该均值时考虑数据局部分布,将会使生成的示例包更加准确。本论文充分考虑数据分布特性,提出新的分类算法。实验表明改进算法性能优于其他常用多标记学习算法。  相似文献   

9.
针对前馈式多层神经网络的结构和权值设计方法的缺陷,提出了一种基于改进遗传算法的前馈神经网络自动优化设计方法,用以完成对网络结构和权值空间的搜索,提高神经网络的收敛速度和搜索全局最优解的能力。通过实验表明,该算法的收敛速度较快,过程稳定,而且泛化能力也较好。故此方法在神经网络设计上能够发挥较好的作用。  相似文献   

10.
基于改进遗传算法的神经网络优化方法   总被引:8,自引:4,他引:4  
为了克服神经网络反向传播算法收敛速度慢,易陷入局部极小值,初始权值和阈值的选择缺乏依据,具有很大随机性等缺陷,采用基于自适应遗传算法的神经网络优化方法,方法结合了两者的优点,但是仍存在种群早期进化速度慢的缺点,于是提出了一种改进的自适应遗传算法,将其应用于神经网络的权值和阈值的优化设计中,并将此模型用于对某城市污水厂难测参数SVI的预测.仿真结果表明,算法不仅可克服BP算法的缺陷,而且与BP和GA-BP网络模型比较,大大提高了收敛速度与收敛精度,获得了良好的测量效果.  相似文献   

11.
基于改进量子遗传算法的过程神经元网络训练   总被引:5,自引:0,他引:5  
针对过程神经元网络由于模型参数较多BP算法不易收敛的问题,提出一种基于量子位Bloch坐标的量子遗传算法.将该算法融合于过程神经网络的训练.按权值参数的个数确定量子染色体上的基因数并完成种群编码,通过新的量子旋转门完成个体的更新.算法中的每条染色体携带3条基因链,因此可扩展对解空间的遍历性,加速优化进程.以两组二维三角函数的模式分类问题为例,仿真结果表明该方法不仅收敛速度快,而且寻优能力强.  相似文献   

12.
用改进的遗传算法训练神经网络构造分类器   总被引:10,自引:1,他引:10  
针对基本遗传算法存在容易早熟和局部搜索能力弱等缺陷,提出了改进的遗传算法,引入交叉概率和变异概率与个体的适度值相联系,改进了操作算子,而且在交叉操作后又引入模拟退火机制,提高遗传算法的局部搜索能力。同时,用改进的遗传算法和基本的遗传算法训练神经网络构造分类器,实验结果表明,改进的遗传算法在最好个体适度值和最好分类准确性等方面性能更好。  相似文献   

13.
一种基于自适应遗传算法的神经网络学习算法   总被引:5,自引:3,他引:5  
结合遗传算法与梯度下降法优点,提出了一种训练神经网络权值的混合优化算法,同时能够优化网络的结构。首先利用全局搜索能力可靠的遗传算法,采用递阶编码方案和自适应变异概率,同时优化网络的权值和结构,在进化结束时,能够寻到全局最优点附近的点。在遗传算法搜索结果的基础上,利用局部寻优能力较强的梯度下降法,从此点出发,进行局部搜索,最终达到网络的训练目标。与单一的遗传算法或者梯度下降法比较而言,混合优化算法的收敛速度明显提高。  相似文献   

14.
基于免疫遗传算法的多层前向神经网络设计   总被引:14,自引:0,他引:14  
罗菲  何明一 《计算机应用》2005,25(7):1661-1662
利用一种基于免疫功能的遗传算法,设计多层前向神经网络,用于实现多层前向神经网络结构的确定和权值空间的搜索。仿真实验结果显示该算法具有比遗传算法和动量BP算法更好的全局收敛性和快速学习网络权值的能力。  相似文献   

15.
改进的遗传算法在优化BP网络权值中的应用   总被引:2,自引:0,他引:2  
对遗传算法和BP神经网络的特点进行了比较,作为进化算法神经网络与遗传算法的目标相近而方法各异。阐述了遗传算法与神经网络结合的必要性。提出了一种改进的遗传算法优化BP神经网络的权值,用遗传算法的全局随机搜索能力弥补了神经网络容易陷入局部最优解的问题。同时,在遗传算法中改变传统的同代交叉机制,采用父代与子代进行交叉,避免了遗传算法过早丧失进化能力。  相似文献   

16.
人工神经网络与改进遗传算法的协作求解   总被引:1,自引:1,他引:0       下载免费PDF全文
简要介绍了改进遗传算法求解问题的步骤以及解决实际问题的特点。为了利用改进遗传算法的优点,提高其收敛速度,提出改进遗传算法与人工神经网络(BP网络)利用神经网络的联想记忆、特征提取功能辅助遗传算法求解结构优化设计问题,以避免在遗传算法中所作的那些不必要的分析计算,从而节省了计算时间。最后通过算例证实,比简单遗传算法与人工神经网络协作计算时间减少约25%。  相似文献   

17.
人工神经网络的结构设计没有系统的规律可循,而基于梯度的神经网络参数优化又易于陷入局部最优解.该文研究了用带退化的协同进化遗传算法来优化神经网络结构,同时优化网络参数.将网络参数作为实数编码基因进行遗传选择,参数个体的受损率超过退化阀值时发生结构退化.退化进程由协同进化的控制个体动态控制.实验证明,该方案能够有效简化神经网络的结构和得到最优网络参数,收敛速度比常规遗传算法快.  相似文献   

18.
基于混沌DNA遗传算法的模糊递归神经网络建模   总被引:1,自引:0,他引:1  
陈霄  王宁 《控制理论与应用》2011,28(11):1589-1594
本文受生物DNA分子遗传机制和混沌优化算法的启发,提出了一种混沌DNA遗传算法,用于优化T-S模糊递归神经网络(FRNN).该方法使用碱基序列表示T-S模糊递归神经网络的前件部分参数,包括模糊规则数,隶属度函数中心点和宽度;设计更为复杂的遗传操作算子来改进遗传算法的寻优性能;利用混沌优化算法优化种群中的较差个体.同时使用递推最小二乘法(RLS)来辨识T-S模糊递归神经网络的后件部分参数.最后,采用基于混沌DNA遗传算法的T-S模糊递归神经网络对一种典型的pH中和过程进行建模。通过与其他建模方法的比较,仿真实验结果表明了所建模型的有效性.  相似文献   

19.
用过程神经网络和遗传算法实现系统逆向求解   总被引:4,自引:0,他引:4  
对于多输入多输出系统,针对如何根据系统模型和期望输出反求系统输入的问题,本文提出了一种基于过程神经网络和遗传算法相结合的方法.首先根据实际系统的领域知识和学习样本集,建立满足系统实际输入输出映射关系的正向过程神经网络.然后按照系统在过程区间的某一期望输出,用过程神经网络的输出误差构造适应度函数,用遗传算法逆向确定系统的过程输入信号,使该输入信号满足已建立的正向过程映射关系,从而完成系统的逆向过程控制.文中给出了具体的实现算法并给出了此方法的一个应用实例.  相似文献   

20.
BP网络作为人工神经网络的重要分支,已经广泛应用于手写数字识别。然而BP神经网络存在训练时间长、易陷入局部最小的问题。为了克服这些问题,提出了一种改进的遗传算法,并用该算法来优化神经网络的权值和阈值。最后,利用基于该算法的神经网络对大量USPS手写数字样本集进行训练。实验结果表明,该算法比单纯的BP算法具有更快的识别速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号