首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improvement in the adhesion strength of polyimide/epoxy joints was obtained by (1) introducing a functional group on the polyimide surface, (2) improving the mechanical properties of the epoxy adhesive, (3) increasing the curing temperature, and (4) using polyamic acid as an adhesion‐promoting layer. The functional group on polyimide was introduced via treatment with aqueous KOH. An adhesion‐promoting layer was formed by spin coating polyamic acid onto a modified polyimide surface. The maximum adhesion strength of the polyimide/epoxy joint was obtained using polyamic acid as both the adhesion‐promoting layer and as the curing agent. The surface energy of the modified polyimide was examined using contact angle measurements and Fourier transform infrared spectroscopy, and the peel strength was determined by the T‐peel method. The peeled surfaces were analyzed using scanning electron microscopy and X‐ray photoelectron spectroscopy.© 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 812–820, 2002  相似文献   

2.
Polyimides containing triazole or imidazole functionalities have been synthesized. Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-3,5-diamino-1,2,4-triazole) (BTDA-TADA) contains triazole groups as repeat units and poly(4,4'-oxydiphthalic anhydride-1,3-aminophenoxybenzene-8-azaadenine) (ODPA-APB-8-azaadenine) consists of triazole (8-azaadenine) groups as the end caps. While the BTDA-TADA polyimide starts to decompose at 350°C, the ODPA-APB-8-azaadenine polyimide is thermally stable at 400°C. The peel strength of copper to BTDA-TADA polyimide without surface modification is 200-400 J/m2. For the adhesion of polyimide to copper, ODPA-APB-8-azaadenine polyisoimide (1.0 μm) and poly(pyromellitic dianhydride-oxydianiline) (20 μm) were coated onto the copper substrate and then the two layers were cured together to polyimides at 400°C. Peel strengths of 500-800 J/m2 were obtained. The failure of the copper/polyimide interface by peeling either the copper or the polymer layer occurred in the near-interface region of the polymer. Both PI/Cu and Cu/PI adhesion was enhanced due to the formation of Cu-polyimide complexes. In the case of PI/Cu adhesion, the polymer chain flexibility of ODPA-APB-8-azaadenine polyimide also plays a significant role in improving adhesion.  相似文献   

3.
The adhesion of polyimide to polyimide was studied by measuring the peel strength of various polyimide–polyimide composites. Different factors such as diffusion of polyamic acid to polyimide substrate, contact angle, wettability, and the thermal expansion coefficient of polyimide films and the presence of siloxane can affect this adhesion and are discussed in this article. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The interfacial reaction and peel strength of polyimide with copper foil at various cure schedules have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and peel test to determine the temperature effect on polyimide/copper interface diffusion and adhesion. SEM studies indicate that the polyimide/copper interfaces are fairly smooth for all samples studied in this experiment. The TEM microstructure reveals the existence of a copper-polyimide interaction zone at the interface when it is cured at a temperature higher than 250°C, which also results in a high peel strength. XPS spectra revealed higher copper and carbonyl carbon contents at the polyimide interface when it is cured at a high-temperature schedule (350°C). From the results of these interface studies, it is concluded that chemical bonding resulting from the interaction of copper oxide and polyimide carbonyl group provides the binding force for polyimide and copper foil. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
BACKROUND: Polyimide films coated on copper are a potential new substrate for fabricating printed circuit boards; however, adhesion between the copper and polyimide films is often poor. The relations between residual stress and adhesion strength according to the development of molecular orientation of polyimide films with different chemical backbone structure coated on copper were studied. RESULTS: The effect of chemical structures on properties including the residual stress and the adhesion strength were widely investigated for four different polyimides. Diamine 4,4′‐oxydianiline (ODA) and dianhydrides 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA), 4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) were used to synthesize polyimide. In an attempt to quantify the interaction of thermal mismatch with the polyimide films depending on various structures, residual stress experiments between polyimide film and Cu? Si wafer were carried out over a range of 25–400 °C using in situ thin film stress analysis. A universal test machine was used to conduct 180° peel test (ASTM D903‐98) of polyimide film from cooper foil. The residual stress on Cu? Si (100) wafer decreased in the order 6FDA‐ODA > BTDA‐ODA > ODPA‐ODA > PMDA‐ODA, and the interfacial adhesion strength decreased in the order BTDA‐ODA (5 N mm?2) > ODPA‐ODA > PMDA‐ODA > 6FDA‐ODA. The results may suggest that the morphological structure, degree of crystallinity of chain orientation and packing significantly relate to the residual stress and adhesion strength in polyimide films. Wide‐angle X‐ray diffraction was used for characterizing the molecular order and orientation and X‐ray photoelectron spectroscopy was used for the analysis of components on copper after polyimide films were detached to confirm the existence of copper oxide chemical bonding and to measure the binding energy of elements on the copper surface. CONCLUSION: In this research, it is demonstrated that BTDA‐ODA polyimide has a low residual stress to copper, good adhesion property, good thermal property and low dielectric constant. Therefore, BTDA‐ODA would be expected to be a promising candidate for a two‐layer copper‐clad laminate. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
The inhibition of the imidization of polyamic acid, a precursor of polyimide, in the presence of Cu, was confirmed by the incorporation of Cu2+ ions in polyamic acid films. It was found that the imidization reaction was incomplete below 300°C but decomposition took place when heating above 300°C. Pretreating the Cu surface with a two-component primer solution containing polybenzimidazole and 2-mercaptobenzimidazole can make the imidization proceed without retardation and avoid the decomposition above 300°C. By choosing appropriate surface treatment systems, one can achieve the improvement of adhesion between PI and Cu substrate.  相似文献   

7.
The adhesion strength of the interface between copper foil and resin is an important technological parameter for applications in microelectronics. In this study, a new brown oxidation solution of copper foil, including the recipe composition and reliability tests, was fully discussed. We provided an overview of brown oxidation process used in the semi-flexible printed circuit boards production industry by investigating the brown oxide film. The morphology of the copper oxide film was changed from lamellar structure to honeycomb structure with the increasing of oxidation time. The peel adhesion strength of the Cu/polyimide laminates was increased from about 2–16 N/cm by altering the immersion time and the concentration of inhibitors in brown oxidation solution. Scanning electron microscopy, peel tests and X-ray diffraction indicated that the higher adhesion strength was resulted from the rougher surface and the proper etching depth of copper foil, which was caused by chemical reactions on the interface surface of copper foil.  相似文献   

8.
The adhesion strength between a copper (Cu) thin film and a polyimide [pyromellitic dianhydride-oxydianiline (PMDA-ODA)] substrate is reduced by heat treatment at 150°C in air. In this work, we determined the changes in adhesion strength between Cu films and polyimide substrates using Auger electron spectroscopy (AES), attenuated total reflection Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The analysis showed that the weak boundary layer (WBL) shifted towards the Cu interface as the heat treatment time was increased. To confirm this shift, we looked at two other polyimide substrates: biphenyl dianhydride-p-phenylene diamine (BPDA-PDA) and biphenyl dianhydride-oxydianiline (BPDA-ODA). Comparing the adhesion strength for the Cu thin film, the adhesion strength was high for the Cu/PMDA-ODA and Cu/BPDA-ODA laminates, but very low for the Cu/BPDA-PDA laminate. One of the possible reasons for this behavior could be that the ether moiety between the two benzene rings in ODA is related to the adhesion between a Cu film and an 02-plasma-treated polyimide (PI) substrate. The relationship between the adhesion strength and chemical bonding states is also discussed. We conclude that a Cu thin film sputtered onto a PI substrate is apt to peel at the oxidized interface, due to the heat treatment.  相似文献   

9.
The reliability of adhesion performance of bare Cu, as-deposited and surface-hardened black oxide coatings on Cu substrates was studied. The interfacial adhesion with a polyimide adhesive tape and an epoxy moulding compound was measured using the button shear and tape peel tests after hygrothermal ageing in an autoclave, high temperature ageing and thermal cycles. Moisture adsorption and desorption studies at different aging times suggested that the black oxide coating was effective in reducing the moisture adsorption. The bond strengths for all substrates remained almost unchanged after thermal ageing at 150°C for 8 h. Thermal cycling between ?50°C and 150°C for 500 cycles reduced by about 20% the button shear strength of the as-deposited black oxide substrate, but it did change much the bonding performance of the bare Cu substrate. Hygrothermal ageing at 121°C/100% RH in an autoclave was most detrimental to adhesion performance because of the combined effect of elevated temperature and high humidity. The reduction in button shear strength after the initial ageing for 48 h was 50–67%, depending on the type of coating. In all accelerated ageing tests, the residual interfacial bond strengths were consistently much higher for the black-oxide-coated substrates than the bare Cu surface, confirming a higher reliability of black oxide coating. Fracture surfaces analysis of tape-peeled bare copper substrates after 500 cycles of thermal loading revealed a transition in failure mechanism from interfacial to cohesive failure. In contrast, the failure mechanism remained unchanged for black-oxide-coated substrates. The observations made from the button shear and tape peel tests were generally different because of the different fracture modes involved.  相似文献   

10.
Ar ion beam etching (IBE) can be used to roughen a Cu surface and thus improve the adhesion of subsequently spin-coated polyimide (PI) films. During Ar IBE, the surface morphology of sputter-deposited Cu changes from round bumps to a rough cone structure. The ultimate tensile strength (UTS) of the PI/Cu interface is increased for certain specific beam conditions. Under optimal conditions, the UTS of the etched PI/Cu interface (6.2 MPa) is twice that of the unetched PI/Cu interface (3.1 MPa). Cu is detected in the deposited PI by Rutherford backscattering spectrometry (RBS). The amount of Cu at the top surface of the 2.5 μm thick PI film is 0.1 at. %; this is determined by RBS and XPS. While the Cu is dissolved by polyamic acid and diffuses into the PI, an oxygen-rich region is formed in the Cu. The oxygen-rich region in Cu grows from 50 A (approximately Cu2O) before PI deposition to more than 2000 A (where the oxygen concentration is about 5 at. %) after PI deposition. The oxygen source is not the PI itself but either dissociated oxygen from the water vapor in the PI imidization process or a product of the chemical reaction between Cu and polyamic acid.  相似文献   

11.
Polyimide alloys are prepared by blending the crosslinked and uncrosslinked polyamic acid components and followed by thermal imidization. The blend components can be synthesized by the reaction of polyamic acid with the varying concentration of crosslinker [here methylene bis (4-phenyl isocyanate or MDI)] from 1.54 × 10?2 mol/L (i.e. hypothetically calculated critical crosslinker concentration or CCC) to 1.54 × 10?6 mol/L. This communication discusses the synthesis and characterization of polyimide (PI) blends and alloys prepared by varying degrees of crosslinking introduced via isocyanate-amic acid reaction. The polyimides were prepared by thermally imidizing the polyamic acid blends at different curing temperatures from 50°C to 350°C. The degree of imidization and residual solvent content for blends having varying mole fractions of crosslinked (or branched) and uncrosslinked components and two extreme conditions and at specified temperature-time profiles have been studied. The resultant PI-MDI blends have exhibited synergism on mechanical properties. The improvement in mechanical properties, however, was significantly higher at the lower imidization temperature (i.e. 50°C to 150°C). The feasibility of preparing polyimide alloys with synergistic combinations of crosslinked and uncrosslinked polyimide components was inferred.  相似文献   

12.
A 90° peel tester with substrate heating capability was built to evaluate the adhesion strength of polyimide films to a silicon substrate. The effects of polyimide film thickness and peel rate on polyimide adhesion to a silicon substrate under high or low humidity, and at elevated temperatures, have been evaluated. In a high humidity environment, a low peel strength was measured. The influence of moisture on the peel strength increases with decreasing peel rate. Peeling at elevated temperature reduces the moisture effect even under high humidity conditions. Using a low peel rate in a high humidity environment, the measured peel strength showed a maximum as the polyimide film thickness increased. No striations in peeled polyimide films were observed for peeling in a high humidity environment.  相似文献   

13.
Photoreactive polyimide precursors, which are readily soluble in common organic solvents and optically transparent at light of 365 nm wavelength (i-line), similar to aliphatic polyimide precursors, were obtained by polycondensation of biphenyltetracarboxylic dianhydride (BPDA) and fluorine-containing diamine compounds. In particular, the polyimide precursor prepared from 2,2 bis(3-amino-4-methylphenyl) hexatluoropropane showed high solubility in common organic solvents and complete transparence at i-line wavelength. A 3 μm thick film of the polyimide precursor on a silicon wafer was exposed and developed, and offered high resolution (0.5μm line) patterns with an aspect ratio of 6.0. This polymide precursor swells very little in the developing solvent, resulting in the high resolution. Conversion of polyamic acid to polyimide at several curing temperatures was observed by infrared spectrophotometer and thermogravimetry.  相似文献   

14.
Loop tack, peel strength, shear strength, and morphology of (benzoyl peroxide)‐cured epoxidized natural rubber (ENR 25)/(acrylonitrile‐butadiene) rubber (NBR) blend adhesive were investigated by using petro resin as the tackifying resin. Benzoyl peroxide loading varied from 1 to 5 parts by weight per hundred parts of resin (phr), whereas the petro resin loading was fixed at 40 phr. A SHEEN hand coater was used to coat the adhesive on the polyethylene terephthalate substrate at 30 μm and 120 μm coating thicknesses. (ENR 25)/NBR adhesive was crosslinked at 80°C for 30 min prior to the determination of adhesion strength by a Lloyd adhesion tester operating at 10–60 cm/min. Results show that maximum loop tack and peel strength occur at 2 phr of benzoyl peroxide loading, whereby optimum cohesive and adhesive strength are obtained. However, shear strength increases with increasing benzoyl peroxide concentration, an observation that is associated with the steady increase in the cohesive strength. Scanning electron microscopy micrograph shows that little adhesive remained on the substrate at 0 phr compared with 2 phr of benzoyl peroxide loading, indicating that crosslinking increases the peel strength of the adhesive. In all cases, the adhesion properties increase with coating thickness and testing rate . J.VINYL ADDIT. TECHNOL., 24:93–98, 2018. © 2015 Society of Plastics Engineers  相似文献   

15.
The peel adhesion between two different electroless-plated Cu layers and polymer substrates was studied. Cu was electroless-plated onto polymer substrates using two different commercial solutions with different compositions. The adhesion strength between the electroless Cu layers and polymer substrates was measured with the 90° peel test. The adhesion was influenced by the coverage, grain size, and the thickness of the electroless Cu layer. Poor coverage of the electroless Cu layer increased the density of the pores at the interface between the Cu layer and the substrates, thereby degrading the adhesion strength because of a decrease in the contact area. In addition, the electroless Cu layers with larger nodules and larger grains were softer and had higher peel adhesion since the soft and ductile Cu layer promoted a greater amount of plastic deformation during the peel test. This led to enhanced peel adhesion. Finally, as the thickness of the electroless Cu layer increased, the peel adhesion decreased. The thicker Cu layers are not easily bent. Poor bending of the Cu layer induced less plastic deformation, causing a decrease in the peel adhesion. In conclusion, soft and thin electroless Cu layers with greater coverage are preferred in order to obtain good adhesion.  相似文献   

16.
The characteristics of the adhesions of polyimide to silicon and to polyimide and the autohesion of a polyimide blend have been investigated. As found, the peel strength of pyromellitic dianhydride–4,4′-oxydianiline (PMDA–ODA) on silicon can be greatly improved by blending with 20 or 40% benzophenone tetracarboxylic dianhydride–p-phenylene diamine (BPDA–PDA). Exposing in air for a 2 day period resulted in a serious deterioration in adhesion for the pure PMDA–ODA system, while in no deterioration for the blend systems. Regardless of adhesion or autohesion, the resulting peel strength decreased markedly with the increase of the curing temperature. It was also found that based on the same curing temperature the diffusion of NMP is much faster in the film of PMDA–ODA than in the blend containing 20% BPDA–PDA. Beside curing temperature, imide-to-imide compatibility seems to play an important role in affecting the adhesion characteristics. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
In this study, a triple-layer thermal barrier coating (TBC) of Cu-6Sn/NiCrAlY/YSZ was deposited onto a carbon-fiber reinforced polyimide matrix composite. Effects of different thicknesses of YSZ ceramic top coat and NiCrAlY intermediate layer on microstructural, mechanical and thermal shock properties of the coated samples were examined. The results revealed that the TBC systems with up to 300 µm top coat thicknesses have clean and adhesive coating/substrate interfaces whereas cracks exist along coating/substrate interface of the TBC system with 400 µm thick YSZ. Tensile adhesion test (TAT) indicated that adhesion strength values of the coated samples are inversely proportional to the ceramic top coat thickness. Contrarily, thermal shock resistance of the coated samples enhanced with increase in thickness of the ceramic coating. Investigation of the TBCs with different thicknesses of NiCrAlY and 300 µm thick YSZ layers revealed that the TBC system with 100 µm thick NiCrAlY layer exhibited the best adhesion strength and thermal shock resistance. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.  相似文献   

18.
A thermoplastic modification method was studied for the purpose of improving the toughness and heat resistance and decreasing the curing temperature of the cured epoxy/4, 4′‐diaminodiphenyl sulfone resin system. A polyimide precursor‐polyamic acid (PAA) was used as the modifier which can react with epoxy. The effects of PAA on curing temperature, thermal stability and mechanical properties were investigated. The initial curing temperature (Ti) of the resin with 5 wt % PAA decreased about 50°C. The onset temperature of thermal decomposition and 10 wt %‐weight‐loss temperature for the resin system containing 2 wt % PAA increased about 60°C and 15°C respectively. Besides, the value of impact toughness and plain strain fracture toughness for the modified epoxy resin increased ~ 190% and 55%, respectively. Those changes were attributed to the outstanding thermal and mechanical properties of polyimide, and more importantly to formation of semi‐interpenetrating polymer networks composed by the epoxy network and linear PAA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
We have used an extreme environmental stress test to study the adhesion of a thin sputtered copper film (0.5 μm) to flexible polyimide (PI) substrates between 25 and 125 μm thick. The polyimide types include Kapton (PMDA-ODA) and Upilex (BPDA-PDA). When there was no surface modification on the PI, the adhesion of the film to Upilex type S was better than the adhesion to Upilex type R or Kapton type HN. When the polymer surface was treated with a simple AC nitrogen glow discharge (NGD), there was an improvement in the adhesion of the film to each of these polyimides. This improvement in adhesion became apparent after the film/substrate combination was subjected to either boiling water or steam for 30 min or more; the difference became quite clear after 2 h. A simple tape test was used to quickly estimate a relative adhesion strength. In order to compare the effect of our AC NGD treatment with other substrate surface modification methods, we used it to improve the coupling of a thick (> 10 μm) layer of copper (via a thin intermediate chromium layer) to a rigid PI substrate, formed from spin coating its precursor onto a silicon wafer. Peel test results were within a factor of 2-3 of the corresponding results obtained with a radio frequency (RF) plasma and ion beam treatments.  相似文献   

20.
The molecular structure of interphases formed by chemically curing the polyamic acid of pyromellitic dianhydride (PMDA) and oxydianiline (ODA) against meta-aminothiophenol (m-ATP)-primed silver substrates was determined using surface-enhanced Raman scattering (SERS) and reflection-absorption infrared spectroscopy (RAIR). It was found that m-ATP was adsorbed dissociatively onto silver substrates through the sulfur atoms. When polyamic acid was deposited onto silver substrates pretreated with m-ATP, acid groups of the polyamic acid combined with amino groups of m-ATP to form ammonium carboxylate salts near the interphase. SERS and RAIR results indicated that the structure of the interphase was significantly different from that of the bulk polymer. Chemical curing of the polyamic acids located in the interphase was suppressed because of the formation of ammonium carboxylate salts. However, the bulk of the polyamic acid films was highly cured to form polyimide. It was also found that more isoimide groups were formed when thin polyamic acid films were chemically cured in acetic anhydride/pyridine solutions than in acetic anhydride/triethylamine solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号