首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为提高目前硬件运行卷积神经网络(CNN)的速度和能效,针对主流CNN网络的卷积计算设计加速模块并在FPGA上实现用于加速CNN网络的SoC系统。硬件平台采用带有ARM处理器的ZCU102 FPGA开发板,系统采用处理器和加速器的结构进行设计。加速器负责卷积计算,采用分块技术并重组卷积计算循环次序,使片上缓存的数据复用率更高,减少系统与内存之间数据的传输。支持1×1到11×11的卷积核尺寸,硬件支持的激活函数为ReLU和Leaky ReLU。处理器负责控制并处理CNN网络的其它计算,使SoC系统具有通用性和灵活性。实验结果表明,在100 MHz的工作频率下,峰值计算性能可以达到42.13 GFLOPS,相比CPU和其它FPGA计算的性能有一定提升。  相似文献   

2.
随着人工智能的快速发展,卷积神经网络(CNN)在很多领域发挥着越来越重要的作用。分析研究了现有卷积神经网络模型,设计了一种基于现场可编程门阵列(FPGA)的卷积神经网络加速器。在卷积运算中四个维度方向实现了并行化计算;提出了参数化架构设计,在三种参数条件下,单个时钟周期分别能够完成512、1024、2048次乘累加;设计了片内双缓存结构,减少片外存储访问的同时实现了有效的数据复用;使用流水线实现了完整的神经网络单层运算过程,提升了运算效率。与CPU、GPU以及相关FPGA加速方案进行了对比实验,实验结果表明,所提出的设计的计算速度达到了560.2 GOP/s,为i7-6850K CPU的8.9倍。同时,其计算的性能功耗比达到了NVDIA GTX 1080Ti GPU的3.0倍,与相关研究相比,所设计的加速器在主流CNN网络的计算上实现了较高的性能功耗比,同时不乏通用性。  相似文献   

3.
针对卷积神经网络(CNN)对运算的需求,现场可编程逻辑门阵列(FPGA)可以充分挖掘CNN内部并行计算的特性,提高运算速度.因此,本文基于FPGA开发平台,从模型优化、参数优化,硬件加速以及手写体数字识别四个方面对CNN的FPGA加速及应用进行研究.提出一种数字识别网络RLeNet,并对网络进行参数优化,卷积运算加速采...  相似文献   

4.
熊伟  黄鲁 《计算机系统应用》2019,28(11):101-106
商品检索是电商行业智能化发展的一个重要的问题.本设计实现了基于ZYNQ和CNN模型的服装识别系统.利用TensorFlow训练自定义网络,定点化处理权重参数.利用ZYNQ器件的ARM+FPGA软硬件协同的特点搭建系统,使用ARM端OpenCV进行图像预处理,FPGA端CNN IP进行实时识别.ARM与FPGA之间实现了权重可重加载结构,无需修改FPGA硬件而实现在线升级.系统采用fashion-minist数据集作为网络训练样本,根据系统资源配置CNN IP的加速引擎的数量来提高卷积运算的并行性.实验表明,本系统针对电商平台下的图片能够实时准确识别和显示,准确率达92.39%.在100 MHz工作频率下,图像处理速度每帧可达到1.361 ms,功耗仅为0.53 W.  相似文献   

5.
柯岩  林小竹  廖蕊  魏战红 《计算机工程》2019,45(11):191-197
随着深度学习的不断发展,卷积神经网络(CNN)在目标检测与图像分类中受到研究者的广泛关注。CNN从LeNet-5网络发展到深度残差网络,其层数不断增加。基于神经网络中"深度"的含义,在确保感受野相同的前提下,给定标准的输入图片和输出特征图,对不同层数的卷积神经网络进行训练,并将训练结果与标准输出图进行对比。在此基础上,对标准的3×3卷积核进行分解,构建由2×2大小卷积核组成的CNN。根据目标特征是否具有中心对称的性质,提出多层卷积网络初始权值的选取规则。  相似文献   

6.
为了构建完整的微生物生长环境关系数据库,提出基于卷积神经网络-长短时记忆(CNN-LSTM)的关系抽取系统.结合卷积神经网络(CNN)和长短时记忆(LSTM),实现对隐含特征的深度学习,提取分布式词向量特征和实体位置特征作为模型的特征输入.对比实验验证加入特征后CNN-LSTM模型的优势,并将CNN模型的特征输出作为LSTM模型的特征输入.在Bio-NLP 2016共享任务发布的BB-event语料集上得到目前最好的结果.  相似文献   

7.
针对大数据环境下并行深度卷积神经网络(DCNN)算法中存在数据冗余特征多、卷积层运算速度慢、损失函数收敛性差等问题,提出了一种基于Im2col方法的并行深度卷积神经网络优化算法IA-PDCNNOA。首先,提出基于Marr-Hildreth算子的并行特征提取策略MHO-PFES,提取数据中的目标特征作为卷积神经网络的输入,有效避免了数据冗余特征多的问题;其次,设计基于Im2col方法的并行模型训练策略IM-PMTS,通过设计马氏距离中心值去除冗余卷积核,并结合MapReduce和Im2col方法并行训练模型,提高了卷积层运算速度;最后提出改进的小批量梯度下降策略IM-BGDS,排除异常节点的训练数据对批梯度的影响,解决了损失函数收敛性差的问题。实验结果表明,IA-PDCNNOA算法在大数据环境下进行深度卷积神经网络计算具有较好的性能表现,适用于大规模数据集的并行化深度卷积神经网络模型训练。  相似文献   

8.
现有软件实现方案难以满足卷积神经网络对运算性能与功耗的要求。为此,设计一种基于现场可编程门阵列(FPGA)的卷积神经网络加速器。在粗粒度并行层面对卷积运算单元进行并行化加速,并使用流水线实现完整单层运算过程,使单个时钟周期能够完成20次乘累加,从而提升运算效率。针对MNIST手写数字字符识别的实验结果表明,在75 MHz的工作频率下,该加速器可使FPGA峰值运算速度达到0.676 GMAC/s,相较通用CPU平台实现4倍加速,而功耗仅为其2.68%。  相似文献   

9.
本文通过CNN提取网络数据连接基本特征,并将卷积运算后输出的高级特征作为LSTM网络的输入参数进行长序列预测,有效地解决LSTM的输入序列特征难题。本文以KDD99训练集进行模型训练和测试,实验证明本文设计CNN-LSTM混合模型有较高的准确率和F1值。  相似文献   

10.
深度学习以其强大的自适应特征提取和分类能力在机械大数据处理方面取得了丰硕的成果,由于电机结构的复杂性,其信号表现出的非平稳、非线性和复杂多样等特点,使得传统分类方法中的Softmax分类器+交叉熵损失函数对电机故障诊断力不从心。根据电机信号非平稳、数据量大等特点,结合短时傅里叶变换(STFT)与深度学习中的卷积神经网络(CNN)算法和Triplet Loss三元组思想,提出了深度度量学习电机故障诊断方法。该方法能将电机故障信号转换成时频谱图,同时构建CNN,将预处理后的样本用于CNN的训练,采用Triplet Loss作为损失函数度量故障数据高维特征间的距离,并结合标签有监督地微调整个网络,从而实现准确的电机故障诊断。实验表明该方法在处理复杂数据时能够度量特征在高维空间中的距离,高效完成故障诊断任务,弥补了交叉熵函数的不足。  相似文献   

11.
针对现有卷积神经网络(CNN)模型计算效率低、内存带宽浪费大等问题,提出了一种基于现场可编程门阵列(FPGA)优化压缩策略。对预先训练好的CNN模型进行分层剪枝,采用基于新型的遗传算法进行信道剪枝,同时设计了两步逼近适应度函数,进一步提高了遗传过程的效率。此外,通过对剪枝CNN模型进行数据量化,使得卷积层和全连接层的权值根据各自的数据结构以完全不同的方式存储,从而减少了存储开销。实验结果表明,在输入4 000个训练图像进行压缩过程中,该方法所耗压缩时间仅为15.9 s。  相似文献   

12.
针对现有心音分类算法普适性差、依赖于对基本心音的精确分割、分类模型结构单一等问题,提出采用大量未经过精确分割的心音二维特征图训练深度卷积神经网络(CNN)的方法;首先采用滑动窗口方法和梅尔频率系数对心音信号进行预处理,得到大量未经过精确分割的心音特征图;然后利用深度CNN模型对心音特征图进行训练和测试;根据卷积层间连接方式的不同,设计了 3种深度CNN模型:基于单一连接的卷积神经网络、基于跳跃连接的卷积神经网络、基于密集连接的卷积神经网络;实验结果表明,基于密集连接的卷积神经网络比其他两种网络具备更大的潜力;与其他心音分类算法相比,该算法不依赖于对基本心音的精确分割,且在分类准确率、敏感性和特异性方面均有提升.  相似文献   

13.
深度学习方法表现出来了非常优异的特征提取能力,本文针对传统特征提取方法需要先验知识的不足,提出了一种 AutoEncoder与Convolutional Neural Networks(CNN)相结合的深度学习特征提取方法;给AutoEncoder加入一种快速稀疏性控制方法,用来训练出基本构件,并初始化CNN的卷积核;给CNN网络加入了滤波机制,使输出特征保持稀疏性。实验指出,在Minist手写数字库上,本文方法取得了误差率为5.07%的较好结果,实验进一步通过交叉验证t检验指出,加入滤波机制的特征提取模型优于没有加滤波机制的模型。  相似文献   

14.
目前在中央处理器(CPU)中,卷积神经网络存在速度慢、功耗高的缺点,针对深度学习中的卷积神经网络所需计算时间长、消耗资源多、卷积运算量大的问题,提出了使用现场可编程门阵列(FPGA)硬件平台对卷积神经网络图像识别系统进行加速,对卷积神经网络的进行算法改进和加速。设计了卷积层并行计算的流水线模块和池化层改进模块,还通过数据量化的方式减少FPGA资源耗费。最后,使用MINST数据集对算法进行评估,在Zynq7010和CPU上进行验证。实验结果表明,设计的方法资源占用率低,识别速度快,适合实际领域使用。  相似文献   

15.
基于卷积神经网络(CNN)的深度模型在图像识别与分类领域应用广泛,但在全局特征控制、概念层次特征不变性提取和变量之间的因果关系确定方面仍存在不足,使得深度模型缺乏灵活性、适应性及泛化性。基于因果干预和不变性,提出一种基于CNN深度模型的定向修剪和网络结构优化方法。通过对模型输入进行基于不变性的干预调制,根据生成的调制图片序列分析预训练网络卷积子结构的输出分布,筛选和定向修剪噪声敏感子结构。构建基于类间区分度的目标函数,借助经济学领域中的资本资产定价模型构建网络的层间连接,生成在单分类任务下能增大类间区分度的网络拓扑结构,逐层优化构建概念层次的稳定特征。在ImageNet-2012数据集上的实验结果表明,优化后的深度模型相比于ResNet50基线预训练模型的分类准确率约提升了5个百分点,并大幅降低了训练集规模。  相似文献   

16.
深度卷积神经网络的X射线焊缝缺陷研究   总被引:1,自引:0,他引:1  
针对X射线焊缝的缺陷识别难度较高且难以分类这一问题,在典型CUDA-CONVNET卷积神经网络(CNN)的基础上,改进并设计了一种深度CNN结构.以图像预处理作为基础,在保证最大限度提取原始图像的焊缝特征的前提下,对CNN的层次架构及参数设定开展了研究;通过与支持向量机(SVM)识别算法对比,进一步评估提出的深度学习方式,研究结果表明:改进后的深度CNN结构及其算法对于大样本的图像特征表达与识别能力有一定的优势,运算样本与错误率成反比,网络结构具有较高的图像分类识别正确率.  相似文献   

17.
《计算机工程》2017,(8):243-248
传统2D卷积神经网络对于视频连续帧图像的特征提取容易丢失目标时间轴上的运动信息,导致识别准确度较低。为此,提出一种基于多列深度3D卷积神经网络(3D CNN)的手势识别方法。采用3D卷积核对连续帧图像进行卷积操作,提取目标的时间和空间特征捕捉运动信息。为避免因单组3D CNN特征提取不充分而导致的误分类,训练多组具有较强分类能力的3D CNN结构组成多列深度3D CNN,该结构通过对多组3D CNN的输出结果进行权衡,将权重最大的类别判定为最终的输出结果。实验结果表明,将多列深度3D CNN应用于CHGDs数据集上进行手势识别,识别率达到95.09%,与单组3D CNN及传统2D CNN相比分别提高近7%,20%,对连续图像目标识别具有较好的识别能力。  相似文献   

18.
本文研究了金融电子票据中高效率的快速多重数字水印加密在图象深度传感器中的应用方法,针对票据中的数字、签名等关键内容容易被篡改的问题,针对关键区域进行卷积神经网络的识别和水印加密。首先,利用卷积神经网络识别票据中的关键信息区域,以减少水印加密的运算数据量,提高金融票据自动处理效率。在传统的网络结构中,由于CNN的卷积池化操作,使得粗粒度和边缘信息丢失,CNN网络中最顶层的信息维度偏低,易导致过拟合。针对上述问题,本文提出利用票据图及其差分特征,构建适合CNN网络的多通道图像输入特征,充分挖掘图像内在特征;然后进一步改进传统的CNN网络结构,把所有卷积层的输出连接为一层,构成包含各层信息的融合特征,输入网络的全连接层进行分类识别。实验结果表明,改进后的CNN识别算法,相较传动CNN、DNN等算法,其性能均有明显提升,能够更加高效的进行多个关键区域的内容识别,从而高效的进行多重数字水印的加密,提高金融票据处理的安全性和运算效率。  相似文献   

19.
近年来,卷积神经网络在图像处理方面得到了广泛应用,然而其存在计算复杂,移动端资源有限,无法存储过多数据、进行大规模计算等缺点。提出一种基于CNN的汉字识别系统的硬件实现方法。在TensorFlow框架下用casia数据集训练出20个常用汉字的CNN网络架构,测试集识别率达98. 36%,并采用卷积核复用、定点化等方法降低资源消耗,在FPGA上搭建优化后的CNN。最后,将摄像头实时采集的图片输入到上述CNN,实现硬件端的汉字识别。实验结果表明,在结构简化、速度相较CPU提高6. 76倍的同时,在FPGA上所构建的CNN达到几乎无损的97. 58%的准确率。  相似文献   

20.
近年来,随着人工智能技术的发展,卷积神经网络(CNN)作为深度学习技术中的常用算法,在计算机视觉、语音识别及自然语言处理等诸多领域得到了广泛的应用.可编程门阵列(FPGA)因其高并行度和高灵活性等优势常被用于CNN的加速.基于此,本文对高性能CNN加速器的设计进行研究.文中采用DSP的级联、卷积核数据的"乒-乓"结构,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号