首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxides formed on the surface by corona treatment of low-density polyethylene film can be used to initiate grafting of polar vinyl monomers such as acrylic acid. Different types of peroxides are probably formed on the surface, but at least hydroperoxides could be detected by XPS analysis. The grafting reaction was carried out directly after corona treatment, by placing the corona-treated film above a solution of acrylic acid heated to 100°C. The grafting reaction takes place in a vapor phase of the monomer. After extracting the reacted films with hot methanol and drying, surface analysis by XPS, IR, and contact angle measurements were carried out. Effect of degree of corona treatment and reaction time have been studied. The conclusion from this work is that acrylic acid in vapor phase can successfully be grafted onto corona-treated polyethylene film by this method. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Plasma induced graft polymerization of acrylic acid onto polypropylene (PP) monofilament was carried to introduce carboxyl functionality on its surface. The monofilament was treated with oxygen plasma to create hydroperoxide groups and subsequent graft polymerization was initiated on this exposed monofilament. It was observed that in the absence of an added inhibitor, the grafting did not proceed because of the extensive homopolymerization which left behind hardly any monomer for the grafting reaction. The addition of ferrous sulfate to the grafting medium led to the homopolymer free grafting reaction. The addition of organics, such as methanol, butanone, and acetone led to complete inhibition of the homopolymerization at 60% content. However, the addition of butanone led to much lower degree of grafting than methanol and acetone. The contact angle of the monofilament showed drastic reduction by plasma treatment and by the subsequent grafting of acrylic acid. The grafting in ferrous sulfate medium showed higher contact angles as compared to the grafting in organic medium. The surface morphology was significantly influenced by the nature of the additive in the grafting medium. © 2007 Wiley Periodicals, Inc. JAppl Polym Sci, 2008  相似文献   

3.
Here we discuss the improvement in the peel strength of silicone rubber film by O2 plasma pretreatment followed by grafting with hydrophilic monomers: acrylamide (AAm) and acrylic acid (AA). The peroxides concentration after O2 plasma treatment was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. ESCA analysis was carried out to confirm the existence of AAm. The peroxides concentration and hence the peel strength increased with increasing plasma treatment power and time, reached a maximum value, and then decreased with further increasing plasma treatment power and time. Peel strength of the silicone film with 3M-600 tape was observed to increase with grafting time; however, it was found to decrease with overgrafting. The maximum peel strength of 384.4 g/cm was found for the 20 W, 10 min plasma treated, AAm grafted film with maximum peroxides concentration of 4.86 x 10-9 mol/cm2 and also with maximum nitrogen-to-carbon ratio (N/C) of 0.247. Hydrolysis experiments show that -NH2 provides higher contribution to adhesion than -COOH does and the grafting degree of AA is lower than that of AAm. The relationship between the degree of grafting and peel strength can be well explained by the mechanical interlocking theory of adhesion.  相似文献   

4.
The graft polymerization of acrylic acid was carried out onto poly(ethylene terephthalate) films that had been pretreated with argon plasma and subsequently exposed to oxygen to create peroxides. The influence of synthesis conditions, such as plasma treatment time, plasma power, monomer concentration, temperature, and the presence of Mohr's salt, on the degree of grafting was investigated. The observed initial increase in grafting with monomer concentration accelerated at about 20% monomer. The grafting reached a maximum at 40% monomer and subsequently decreased with further increases in monomer concentration. The reaction temperature had a pronounced effect on the degree of grafting. The initial rate of grafting increased with increasing temperature, but the degree of grafting showed a maximum at 50°C. The activation energy of the grafting obtained from an Arrhenius plot was 29.1 kJ/mol. The addition of Mohr's salt to the reaction medium not only led to a homopolymer‐free grafting reaction but also diminished the degree of grafting. The degree of grafting increased with increasing plasma power and plasma treatment time. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2993–3001, 2001  相似文献   

5.
Poly(tetrafluoroethylene) films were surface modified by argon plasma treatment followed by graft polymerization. Peroxidе groups were introduced on the surface of poly(tetrafluoroethylene) films after plasma treatment and the consequent contact with air when the films were taken out of the reactor. Grafting polymerization initiated by the surface peroxide (hydroxide) groups was performed on the poly(tetrafluoroethylene) film surface by using acrylic acid, 4-vinylpyridine and 1-vinylimidazole as monomers. Copolymers were obtained with grafting yield from 0.436 to 0.457 mg/cm2 for poly(acrylic acid), from 0.299 to 0.390 mg/cm2 for poly(4-vinylpyridine) and from 0.212 to 0.256 mg/cm2 for poly(1-vinylimidazole), respectively. The free surface energies of the copolymers were determined. The chemical structures and the copolymer surfaces were characterized by IR, XPS and SEM analyses. High energy resolution X-ray photoelectron spectroscopy (XPS) confirmed the grafting of acrylic acid, 4-vinylpyridine and 1-vinylimidazole. The surface hydrophilicities of modified polytetrafluoroethylene films were significantly enhanced after plasma treatment and grafting modification. It is worth emphasizing that in this work acrylic acid, 4-vinylpyridine and 1-vinylimidazole were used as the reactive monomers for grafting on the poly(tetrafluoroethylene) film by plasma treatment. We believe that this vinyl monomers may be employable as functional groups, permitting a potentially wide range of applications: as ionomers, membranes, carriers for immobilization of biomolecules, for complex formation with heavy metals as catalysts.  相似文献   

6.
孙晓宁  王成群 《辽宁化工》2007,36(7):439-442
利用氩等离子体对聚四氟乙烯膜进行预处理,经与空气接触后接枝丙烯酸。用碘化钠法测定了膜表面过氧基团的浓度,探讨了等离子体处理时间、放电功率对膜表面过氧基团浓度的影响;过氧基团的浓度对接枝率的影响。利用红外光谱和X射线光电子能谱图鉴定了接枝产物,对改性后薄膜的表面亲水性进行了测试。  相似文献   

7.
The surface of polypropylene (PP) films was activated by RF plasma method with the use different gases: argon, air, water vapor, and acetic acid vapor. Plasma was diagnosed based on spectra emitted by gas plasma using the method of optical emission spectroscopy. The effectiveness of these processing gases during plasma treatment was analyzed. The effects of PP activation were assessed with the use of IR‐ATR absorption spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, and the analysis of the surface free energy components based on liquid contact angle. The activation of PP surface by plasma treatment resulted in the increased energy of PP surface layer to the extent being dependent on the type of processing gases and in the formation of new chemical groups on it. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

8.
Polypropylene (PP) film activated by corona discharge treatment was grafted with methyl methacrylate (MMA) and acrylic acid (AA). The grafted PP was characterized by spectral, thermal analysis and swelling behavior which confirmed the occurrence of the grafting. The water vapor and oxygen permeability (OTR and WVTR) as well as the mechanical properties have been enhanced by grafting with both AA and MMA. The grafted PP was further immobilized with chitosan (CS) using ceric ammonium nitrate (CAN) as an initiator under ultraviolet radiation. The chitosan immobilized grafted film was characterized by FTIR, mechanical properties, thermal properties and swelling measurements. Scanning electron microscope (SEM) confirmed that the CS is bonded to the grafted PP film. The CS modified PP film has acquired enhanced antibacterial and antifungal properties.  相似文献   

9.
Plasma‐induced graft polymerization of acrylic acid onto polypropylene monofilament was carried out to introduce carboxyl groups on its surface. The monofilament was treated with oxygen plasma to create hydroperoxide groups and subsequent graft polymerization of acrylic acid on exposed filament was carried out. An increase in the plasma power led to higher graft levels. It was observed that the hydroperoxide build up on PP surface follows linear increase with the increase in the plasma treatment time only up to 180 s beyond which it slowed down significantly. The formation of oxygenated species was ascertained by X‐ray photoelectron spectroscopy, and the peroxide content was measured by the 2′‐diphenylpicrylhydrazyl (DPPH) estimation. The grafting was observed to be considerably influenced by the plasma exposure time, plasma power, reaction temperature, monomer concentration and the storage temperature. A maximum in the degree of grafting was observed at 40% monomer concentration beyond which grafting tended to decrease very fast. The grafting was also found to be maximum at 50°C followed by a sharp decrease, subsequently. The storage of the exposed filament at ?80°C led to the identical grafting all along the 16 days. However, the storage at 25°C showed significant reduction in the degree of grafting. The atomic force microscopy showed that surface morphology is transformed into a nonhomogeneous one after the plasma exposure, but tends to flatten out after the grafting process in the form of globular structures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Y. Liang  D.D. Pappas 《Polymer》2011,52(2):510-518
Polymer-polymer composites comprised of vinyl ester matrices (VE) and polypropylene (PP) fiber meshes were fabricated and tested in this investigation. Results indicated that PP fibers greatly enhanced fracture toughness; however, strength of the VE was significantly reduced as voids were observed at the interface of the PP and VE. A two-step surface modification, oxygen plasma treatment followed by grafting vinyltrimethoxysilane (VTMS), was conducted on PP fibers in an effort to improve interfacial strength. Interfacial discontinuities of composites were improved after surface modification of PP. The oxygen plasma treatment added hydrophilic functional groups but caused surface roughness. Surface treatment of PP slightly increased fracture toughness of the PP-VE composite by enhancing energy absorption capacity at the interface. However, mechanical strength and modulus did not significantly increase for the composite using VTMS grafted PP fibers due to the weak fiber material. Small PP fibers with higher strength may attain the expected improvement in mechanical properties after surface treatment.  相似文献   

11.
Polar monomers have been grafted onto polyolefin surfaces with the aid of inert gas plasma. In the first stage, an inert gas plasma (argon plasma) was used to generate free radicals on the polyolefin surface. In the second stage, the plasma generator was turned off and a vinyl monomer introduced as a vapor. Monomer was surface grafted by free radical polymerization. After cleaning and drying, the samples were analyzed by XPS, IR, and contact angle. LD–PE was successfully grafted with acrylic acid, glycidyl methacrylate, methyl acrylate, and 2-hydroxy ethylacrylate. The grafting of acrylic acid was studied in more detail, and the rate of grafting was observed to increase with increasing monomer pressure and to decrease with time. The increasing of grafting temperature was found to reduce the degree of grafting. This last factor can be explained by the reduced concentration of monomer at the polymer surface or by a deactivation of surface radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Hydrophilic microporous membranes were prepared based on polypropylene (PP) cast films blended with a commercial acrylic acid grafted polypropylene (PP-g-AA) via melt extrusion followed by grafting titanium dioxide (TiO2) nanoparticles on its surface, annealing and stretching. ATR-FTIR, XPS and EDS analyses showed that the hydrophilic segments of an amphiphilic modifier (PP-g-AA) acted as surface functional groups on the film surface. The results indicated that the presence of the modifier was very important for grafting TiO2 nanoparticles on the film surface. Compared to PP and PP/PP-g-AA blend films, the water contact angle decreased by a factor of 2.5 after grafting TiO2 on the surface of the films, meanwhile the water vapor permeability of the microporous membranes prepared from those films increased by a factor of 1.5. All these results indicated that the hydrophilicity of the modified PP membranes was improved.  相似文献   

13.
Specific polar groups were introduced on a poly(ethylene terephthalate) (PET) film surface by radio-frequency (RF) plasma treatment. These polar groups were analyzed quantitatively by ESCA, and their effect on the adhesion strength of vacuum-deposited thin cobalt metal film on the plasma-treated PET film surface was investigated. Hydroperoxide and hydroxyl groups introduced onto the PET film surface by RF plasma under an argon or oxygen atmosphere greatly increased the adhesion strength. In particular, oxygen plasma treatment at high RF power was most effective. A large number of amino groups were introduced by the ammonia plasma treatment, but they did not increase the adhesion strength.  相似文献   

14.
Poly (ethylene terephtalate) (PET) nonwoven fabric was treated with He/O2 plasma to produce peroxides and grafted with acrylic acid (AA) for introducing carboxyl groups onto PET surface. The graft yield increased with AA concentration from 1.5M to 2.5M, and then decreased with further increase in AA concentration. Graft yield increased with sodium pyrosulfite (SPS) concentration from 0.005M to 0.02M, and then decreased with further increase of SPS concentration. X‐ray photoelectron spectroscopy results indicated that both of plasma treatment and AA grafting increased oxygen content and decreased carbon content on the PET nonwoven fabric surface. The grafted PET nonwoven fabric showed increase in moisture regain and dye uptake. And drastic increase in wettability was observed after grafting. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3655–3659, 2007  相似文献   

15.
采用低温氧等离子体处理聚对苯二甲酸乙二酯(PET)非织造布接枝丙烯酸(AA)后,再接枝壳聚糖,探讨了氧等离子体参数对接枝AA后PET亲水性的影响,以及接枝壳聚糖后其PET非织造布抗菌性能的变化。结果表明:低温氧等离子体处理PET非织造布后,其纤维表面粗糙度增加,接枝AA后PET亲水性提高。低温氧等离子体处理PET非织造布接枝AA改性的最佳条件为:工作压强30 Pa,放电功率40 W,处理时间2 min。接枝壳聚糖后,PET非织造布具有抑菌性能,对大肠杆菌和金黄色葡萄球菌有明显的抑菌效果。  相似文献   

16.
Polypropylene (PP) film was treated with radio-frequency-induced oxygen plasma, followed by the vacuum deposition of aluminum (Al) thin film, and the peel strength of the Al deposited PP film (Al/PP) was examined. The peel strength of plasma-treated PP film varied widely in the range of 6.7 to 157 N/m depending upon the plasma treatment conditions, whereas that of the untreated PP was 5.2 N/m. The peel strength was minimized at oxygen pressure near 13.3 Pa (0.1 Torr), and decreased with increasing discharge power. The peel strength rapidly increased at the initial stage of plasma treatment (∼ several seconds), decreased at the second stage, and slightly increased again at the third stage. A good agreement was found between the peel strength of Al/PP and the amounts of oxygen introduced onto the PP surface at the initial stage. A short-time treatment was very effective to improve the adhesion of Al/PP. At the end of the second stage, a large amount of carbon was detected by XPS on the Al layer of the peeled interface of Al/PP, which gave a minimum peel strength. Cohesive failure of PP film might have occurred. SEM photograph showed that PP surface was etched by oxygen plasma at the thrid stage. These peel behaviors of Al/PP were explained by the chemical and physical changes of the PP surface caused by oxygen plasma treatment: (1) introduction of O-functional groups onto the PP surface at the initial stage, (2) formation of weak booundary layers resulting from the partial scission of PP molecules at the second stage, and (3) plasma etching of the PP surface at the third stage.  相似文献   

17.
Graft polymerization of acrylic acid onto poly[1-(trimethylsilyl)-1-propyne] [poly(TMSP)] film was examined. The water contact angle of poly(TMSP) film decreased remarkably from 90 to 15° by plasma treatment, which gradually increased up to 40° after several days. When the film exposed to a glow discharge was heated in an aqueous solution of acrylic acid at 80°C for 24 h, graft polymerization proceeded on the film surface, which was confirmed by ATR-IR and ESCA spectra. Graft polymerization effectively occurred above a threshold temperature (80°C). The water contact angle of the grafted film was about 30°, and did not change with time. In contrast, when a poly(TMSP) film exposed to UV irradiation was heated in an aqueous solution of acrylic acid, graft polymerization took place not only on the film surface but also inside the film.  相似文献   

18.
The adhesion between a poly(tetrafluoroethylene) (PTFE) film and a gold substrate was achieved by surface graft copolymerization of glycidyl methacrylate (GMA) on an argon plasma-pretreated PTFE film at elevated temperature with simultaneous lamination to a surface-modified gold substrate. The plasma pretreatment introduces peroxides which are thermally degraded into radicals to initiate the graft copolymerization of GMA on the PTFE surface. The gold surface, on the other hand, was first pretreated with 3-mercaptopropionic acid (MPA), 3-mercaptopropionic acid-2-ethylhexyl ester (MPAEE), or (3-mercaptopropyl)trimethoxysilane (MPTMS) to form self-assembled monolayers (SAMs) and then subjected to Ar plasma treatment. The simultaneous graft copolymerization and lamination of the PTFE film to the gold surface was carried out in the presence of GMA and an amine hardener at an elevated temperature under atmospheric conditions. The modified surfaces and interfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The gold/GMA/PTFE assembly exhibited a T-peel adhesion strength above 10 N/cm and the joint delaminated by cohesive failure inside the bulk of the PTFE film. The strong adhesion of the Au/PTFE laminate is the result of concurrent graft copolymerization on both the Ar plasma-pretreated PTFE surface and the SAM of the Au surface to form a covalent network. The network is further strengthened by the crosslinking reaction promoted by the presence of the hardener.  相似文献   

19.
Four surface activation methods were evaluated on a series of wood-fiber reinforced thermoplastic composites (WPCs) as a means to improve the adhesion of a water-based acrylic coating. Treatments with chromic acid and oxygen plasma performed best, increasing the acrylic coating peel load to WPCs by 170 and 122%, respectively, and yielding adhesion levels equivalent to or higher than those obtained on wood. The benzophenone/ultraviolet and flame treatments also improved the coating adhesion by 100 and 64%, respectively, but did not reach the adhesion levels achieved on wood. For both the chromic acid and oxygen plasma treatments, the WPC formulation impacted the treatment efficacy. Profilometry and scanning electron microscopy (SEM) showed that the chromic acid treatment acted mainly by roughening WPC surfaces. While surface oxidation was not evident from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), the improved wettability of WPCs with water suggested that the oxygen plasma treatment oxidized WPCs.  相似文献   

20.
Four surface activation methods were evaluated on a series of wood-fiber reinforced thermoplastic composites (WPCs) as a means to improve the adhesion of a water-based acrylic coating. Treatments with chromic acid and oxygen plasma performed best, increasing the acrylic coating peel load to WPCs by 170 and 122%, respectively, and yielding adhesion levels equivalent to or higher than those obtained on wood. The benzophenone/ultraviolet and flame treatments also improved the coating adhesion by 100 and 64%, respectively, but did not reach the adhesion levels achieved on wood. For both the chromic acid and oxygen plasma treatments, the WPC formulation impacted the treatment efficacy. Profilometry and scanning electron microscopy (SEM) showed that the chromic acid treatment acted mainly by roughening WPC surfaces. While surface oxidation was not evident from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), the improved wettability of WPCs with water suggested that the oxygen plasma treatment oxidized WPCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号