首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Chopped aramid fiber was modified by an argon low‐temperature plasma treatment to enhance the interfacial strength of aramid paper. The water contact angle of the aramid fiber and the tensile strength, tearing strength, and evenness of the aramid sheets were investigated under different conditions, and the parameters of the argon low‐temperature plasma modification, like gas pressure, discharge power, and discharge time, were optimized. The chemical structure and surface morphology of the fiber after plasma modification were characterized by X‐ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. The strengthening mechanism of aramid paper by low‐temperature plasma modification was also studied. It was found that the argon low‐temperature plasma treatment introduced some new polar groups onto the fiber surface and increased the fiber surface wettability and roughness. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45215.  相似文献   

2.
采用远程氩等离子体对聚四氟乙烯(PTFE)膜进行了表面改性研究,通过接触角测定仪、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等手段,分析研究了改性后材料表面结构、性能的变化。结果表明:PTFE表面经远程氩等离子体处理后,表面微观形态和表面化学成分均发生了变化,且处理效果优于常规氩等离子体。远程氩等离子体可以在一定程度上抑制电子、离子的刻蚀作用,强化自由基反应,使材料表面获得更好的改性效果。经远程氩等离子体短时间(100s)处理后,PTFE表面的F/C比例从1.97降至1.44,O/C比例从0.015增至0.086;表面的水接触角从108°减小到53°;表面自由能从22.4×10-5N·cm-1增加至52.3×10-5N·cm-1。  相似文献   

3.
The aim of this research was to determine the influence of argon plasma treatment condition on the surface properties of poly(ethylene glycol) diacrylate (PEGDA)–hydroxyethly methacrylate hydrogel films, a kind of scaffold materials for tissue engineering. The changes of surface properties have been evaluated by contact angles, X‐ray photoelectron spectra (XPS), and scanning electron microscopy (SEM). From the contact angle measurements of different liquids, the surface free energy of the hydrogel was calculated according to approaches by Owens–Wendt–Kaelble. Results showed that the contact angle of the hydrogel to water decreased remarkably after argon plasma treatment, which was caused by the changes in morphology (SEM images) and chemical composition (XPS results) of the argon plasma‐treated surface. The surface free energy increased with the increase of the argon plasma treated time and power, and these increasing was mainly due to the increase of polar component. The XPS results confirmed that plasma oxidation reaction produced oxygen‐containing functional groups onto the surface. This functional group played an important role in increasing the hydrophilic properties of the hydrogel. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Low‐density polyethylene (LDPE) was treated with a low‐temperature cascade arc plasma torch (LTCAT) of argon with or without adding a reactive gas of oxygen or water vapor. The static sessile droplet method and the dynamic Wilhelmy balance method were employed to perform surface contact angle measurement in order to investigate and characterize the effects of LTCAT treatment on LDPE surfaces. These treatment effects included changes in surface wettability and surface stability and possible surface damage that would create low‐molecular‐weight oligomers on the treated surface. Experimental results indicated that the combination of static and dynamic surface contact angle measurements enabled a comprehensive investigation of these effects of plasma treatment on a polymer surface. Without the addition of a reactive gas, a 2‐s argon LTCAT treatment of LDPE resulted in a stable hydrophilic surface (with a water contact angle of 40°) and little surface damage. The addition of oxygen into argon LTCAT produced a less stable LDPE surface and showed more surface damage. Adding H2O vapor into argon LTCAT produced an extremely hydrophilic surface (with a water contact angle < 20°) of LDPE but with pronounced surface damage. When compared with conventional radio frequency (13.56 MHz) plasmas, LTCAT treatment provides a much more rapid, effective, and efficient method of surface modification of LDPE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2528–2541, 2006  相似文献   

5.
The rf power was modulated (discharge on‐time of 10 μs and discharge off‐time of 50–500 μs), for pulsed argon (Ar) and oxygen (O2) plasmas used to irradiate PET film surfaces to modify the film surfaces. From data regarding the contact angle for the modified PET film surfaces and chemical analyses with XPS, effects of the rf power modulation on the surface modification are discussed. The pulsed Ar and O2 plasmas are effective in modification of the PET film surface. There is no difference in the contact angle between the pulsed plasma and the continuous plasma. Furthermore, the pulsed Ar plasma is advantageous in formation of hydroxyl groups on the PET film surfaces. The rf power modulation has a possibility to modify into peculiar surfaces. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2845–2852, 2002  相似文献   

6.
Polystyrene cell‐culture substrates were treated with argon glow discharge to make their surfaces hydrophilic. The process was novel in that it used a microwave electron cyclotron resonance (ECR) source for polymer surface modification. The substrates were processed at different microwave powers and time periods, and the surface modification was assessed with by measurement of the water contact angle. A decrease in contact angle was observed with increasing microwave power and processing time. Beyond a certain limit of power and duration of exposure, however, surface deterioration occurred. The optimum conditions for making the surfaces hydrophilic without deterioration of the samples were identified. The plasma parameters were assessed by Langmuir probe measurement. Fourier transform infrared spectroscopy with attenuated total reflectance showed evidence for the induction of hydrophilicity on the surface. The surface micromorphology was examined with scanning electron microscopy. The results prove that the ECR glow discharge was an efficient method for enhancing the wettability of the polymer surfaces. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1618–1623, 2003  相似文献   

7.
采用介质阻挡放电(DBD)装置对芳纶1414表面进行改性处理,探讨低温等离子体处理对纤维表面性能的影响。结果表明:经过DBD等离子体处理后,芳纶1414纤维表面粗糙程度加剧,粘结性能和浸润性能有了明显的改善;当DBD等离子体处理功率为200~300 W,时间为60 s,氩气流量为2~3 L/min时,芳纶1414的界面剪切强度从处理前的11.9 MPa上升到14.2 MPa,接触角由处理前的85.0°下降到了60.6°。  相似文献   

8.
Three polyester films with different repeating units—poly(lactic acid) (PLA), poly(ethylene terephthalate) (PET), and poly(oxybenzoate‐co‐oxynaphthoate) (PBN)—were modified by plasma, and the way in which the chemical compositions of the polymer chains influenced the plasma modification was investigated with contact‐angle measurements and X‐ray photoelectron spectroscopy (XPS). There were large differences in the compensated rates of weight loss among the three polyester films when they were exposed to Ar and O2 plasmas. The PLA film showed the highest rate for weight loss of the three films, and the PBN film showed the lowest rate. The PET and PBN film surfaces were modified to become more hydrophilic by either argon or oxygen plasma. However, the PLA film surface was not made more hydrophilic by the plasmas. XPS spectra showed that the PLA film surface was not modified in its chemical composition, but the PBN film surface was modified in its chemical composition to form C? O groups in the PBN polymer chains. The reason that the PLA film surface was not modified but the PBN film surface was modified was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 96–103, 2003  相似文献   

9.
Surface biomedical effects of plasma treatment and plasma polymerization on medical-grade polyetherurethane were studied. N2 and Ar plasma treatments and hexamethyldisiloxane (HMDS) plasma polymerization were performed at a power of 100 W with exposure times ranging from 1 to 15 min. The results showed that the contact angle of water was decreased from 79° to 62° by N2 and Ar plasma treatments, and N2 plasma treatment caused a slight enhancement in anti-coagulability and anti-calcific behavior. HMDS polymerization resulted in a decrease from 79° to 43° in the contact angle and an increase from 30.5 to 37.4 s in the recalcification time. At the same time, the anti-coagulability of polymerized samples for the exposure time of 2-5 min was 2.5 times that of the untreated sample. Results of XPS and ESR analyses showed that HMDS deposited onto the polyetherurethane surface and formed new Si-N bonds, and increased the number of radicals in the sample. XPS analysis also showed that N2 and Ar plasma treatments broke some of the C-O and C=O bonds at the surface and resulted in oxidation of the surface.  相似文献   

10.
The purpose of this study is to prepare the thin film of C‐type parylene (C‐type polyxylylene, parylene‐C) with improved biocompatibility for the biomedical applications, since in spite of the popularity, the parylene‐C has been known to have the less biocompatibility than the N‐type or D‐type parylene. To prepare the well‐designed parylene films through the chemical vapor deposition (CVD) process and the subsequent plasma surface treatment, the parameters of deposition and surface modification were controlled to obtain optimized physical and surface properties. Using CVD, the thin films of parylene‐C as thick as 5 μm were prepared under different deposition pressures. When increasing the deposition rate of parylene film or the deposition pressure, the tensile strength of film increased, whereas the properties such as the surface contact angle and permeability, and the elongation decreased. The deposition rate could be controlled to optimize the physical and physiochemical properties of films. The hydrophilicity of the parylene‐C film increased after plasma surface treatment by showing the larger water contact angle than untreated one. When the radio frequency power was above 100 W in the plasma process, the thin film obtained reveals an excellent cytotropism. It shows the improved biocompatibility with living cells. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Microwave plasma treatments were applied to lightweight cotton fabric with oxygen, nitrogen, and argon at various microwave power levels and exposure times. The results showed significant effects from the type of plasma, microwave power, and treatment time on the fabric weight loss. Oxygen plasma treatment generates higher weight loss than argon plasma and nitrogen plasma. The breaking strength of the treated fabric was affected mainly by longer exposure time to the plasma. The active centers created within the cellulose macromolecules were used to initiate copolymerization reactions with the vinyl laurate monomer [CH3(CH2)10COOCH?CH2]. The grafted cotton fabric showed excellent water repellency properties. Repeated home laundering of the treated cotton fabrics revealed no significant effect on the water contact angle or on the quantity of grafted vinyl laurate monomer as determined by universal attenuated total reflectance Fourier transform IR, demonstrating the good durability of the treatment that was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 896–902, 2005  相似文献   

12.
The methods of argon plasma and argon plasma combined with coupling agents were employed to modify the poly[1,4‐phenylene‐cis‐benzobisoxazole] (PBO) fiber surface. The interfacial shearing strength (IFSS) of PBO fibers/epoxy resin was measured by the single fiber pull‐out test. The surface chemical structure and surface composition of PBO fibers were determined by FTIR and X‐ray photoelectron spectroscopy respectively. The morphology of the fiber surface was investigated by scanning electron microscopy and the specific surface area of the fibers was calculated by B.E.T. equation. Furthermore, the wettability of PBO fibers was confirmed by the droplet profile analysis method. The results showed that the elemental composition ratio of the fiber surface changed after the modification. The IFSS increased by 42 and 78% when the fibers were treated by argon plasma and argon plasma combined with the coupling agents, respectively. Meanwhile, the specific surface areas of the treated fibers were improved. In addition, compared with the modification of argon plasma, the modification of argon plasma combined with the coupling agents inhibited the attenuation phenomena of the IFSS and the wettability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1428–1435, 2006  相似文献   

13.
Abstract

In this work, the effect of medium pressure plasma treatment on thin poly-?-caprolactone (PCL) layers on glass plates is investigated. PCL is a biocompatible and biodegradable polymer which potentially can be used for bone repair, tissue engineering and other biomedical applications. However, cell adhesion and proliferation are inadequate due to its low surface energy and a surface modification is required in most applications. To enhance the surface properties of thin PCL layers spin coated on glass plates, a dielectric barrier discharge (DBD) at medium pressure operating in different atmospheres (dry air, argon, helium) was used. After plasma treatment, water contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to examine the PCL samples. These measurements show that the medium pressure plasma treatment is able to increase the hydrophilic character of the samples, due to an incorporation of oxygen groups at the surface and that the surface roughness is significantly decreased after plasma treatment.  相似文献   

14.
Cellulose acetate membranes (CA) were modified by means of plasma polymerization of ethylene diamine (EDA) and n‐butylamine (n‐BA). The motivation for this work was the application of a modified membrane for the single‐layer enzyme electrode. A tubular reactor with the external radiofrequency (13.56 MHz) excitation was used. Surface modification was performed at 5, 10, and 15 W power (at 27 Pa working pressure) for 5, 10, 15 min. Modified surfaces were characterized in detail by FTIR–ATR, XPS (ESCA), contact angle, and enzyme immobilization activity. The best treatment results were obtained for EDA with 5 W and 30 min and 15 W and 10 min. These results are discussed using surface analysis data. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1341–1352, 2001  相似文献   

15.
Corona, flame, atmospheric plasma, and liquid flame spray (LFS) techniques were used to create highly hydrophilic surfaces for pigment-coated paper and board and machine-glossed paper. All the surface modification techniques were performed continuously in ambient atmosphere. The physical changes on the surfaces were characterized by field emission gun-scanning electron microscopy (FEG-SEM), atomic force microscopy and Parker Print-Surf surface roughness. The chemical changes were analysed by X-ray photoelectron spectroscopy. The superhydrophilic surfaces, i.e. contact angle of water (CAW) <10°, were created mainly by modifying the surface chemistry of the paper and board by argon plasma or SiO2 coating. The nano- and microscale roughness existing on paper and board surfaces enabled the creation of the superhydrophilic surfaces. Furthermore, the benefits and limitations of the surface modification techniques are discussed and compared. For example, the SiO2 coating maintained its extreme hydrophilicity for at least six months, whereas the CAW of argon plasma-treated surface increased to about 20° already in one day.  相似文献   

16.
This work investigates the membrane modification to enhance hydrophobicity aiming for applications as membrane contactors. The PVDF membranes were activated by NaOH and by plasma activation followed by grafting using three organosilanes. For the NaOH, the contact angle of original membranes (68°) was decreased from 44° to 31° with increasing NaOH concentration from 2.5M to 7.5M at 60°C for 3 h. The contact angle of NaOH treated membranes was increased to 100° after modification with 0.01M FAS‐C8 for 24 h. A needle‐like structure was observed on the membrane surface while there was no significant change in pore size and pore size distribution. Moreover, FTIR and XPS data showed Si peak and composition. The mechanical strength was improved. The surface modified membranes under helium plasma activation followed by grafting with 0.01M FAS‐C8 for 24 h showed higher contact angle, mechanical strength and surface roughness than that obtained by NaOH activation method while other physical properties did not change. The long‐term performance test for 15 days of operation was conducted. The modified membranes exhibited good stability and durability for CO2 absorption. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
To improve the interfacial adhesion between evaporated copper film and low‐density polyethylene (LDPE) film, the surface of LDPE films was modified by treating with chromic acid [K2Cr2O7/H2O/H2SO4 (4.4/7.1/88.5)]/oxygen plasma. Chromic‐acid‐etched LDPE was exposed to oxygen plasma to achieve a higher content of polar groups on the LDPE surface. We investigated the effect of the treatment time of chromic acid in the range of 1–60 min at 70°C and oxygen plasma in the range of 30–90 sec on the extent of polar groups created on the LDPE. We also investigated the surface topography of and water contact angle on the LDPE film surface, mechanical properties of the LDPE film, and adhesion strength of the evaporated copper metal film to the LDPE film surface. IR and electron spectroscopy for chemical analysis revealed the introduction of polar groups on the modified LDPE film surface, which exhibited an improved contact angle and copper/LDPE adhesion. The number of polar groups and the surface roughness increased with increasing treatment time of chromic acid/plasma. Water contact angle significantly decreased with increasing treatment time of chromic acid/plasma. Combination treatment of oxygen plasma with chromic acid drastically decreased the contact angle. When the treatment times of chromic acid and oxygen plasma were greater than 10 min and 30 sec, respectively, the contact angle was below 20°. With an increasing treatment time of chromic acid, the tensile strength of the LDPE film decreased, and the film color changed after about 10 min and then became blackened after 30 min. With the scratch test, the adhesion between copper and LDPE was found to increase with an increasing treatment time of chromic acid/oxygen plasma. From these results, we found that the optimum treatment times with chromic acid and oxygen plasma were near 30 min and 30 sec, respectively. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1677–1690, 2001  相似文献   

18.
Acrylamide (AAm) solid state polymerization was induced using argon plasma to improve the pervaporation performance of poly(tetrafluoroethylene) (PTFE) membranes (PTFE‐g‐PAAm) in aqueous alcohol mixtures. The surface morphology, chemical composition, and hydrophilicity changes in the PTFE and PTFE‐g‐PAAm membranes were investigated using ATR‐FTIR, SEM, AFM, X‐ray photoelectron spectroscopy, and water contact angle measurements. The surface hydrophilicity rapidly increased with increasing Ar exposure time, but decreased after longer Ar exposure time because of the degradation in the PTFE‐g‐PAAm membrane grafted layer. Compared with the hydrophilicity of the pristine PTFE membrane (water contact angle = 120°), the argon plasma induced acrylamide (AAm) solid‐state polymerization onto the PTFE surface (water contact angle = 43.3°) and effectively improved the hydrophilicity of the PTFE membrane. This value increases slowly with increasing aging time and then reaches a plateau value of about 50° after 10 days of storage under air. The pervaporation separation performances of the PTFE‐g‐PAAm membranes were higher than that of the pristine PTFE membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:909–919, 2006  相似文献   

19.
Surface properties and structure of an oxygen-plasma-treated thermoplastic fluoroelastomer film under mechanical stretching were investigated using dynamic contact angle, X-ray photoelectron spectroscopy and field-emission scanning electron microscopy. The contact angle of water on the surface decreased from 96° to 36° by the plasma treatment. The contact angle increased under uniaxial stretching: the plasma treatment effect decreased. This was considered to be due to a dilution of the plasma-oxidized chains through the surface exposure of the matrix embedded chains by stretching. In other words, under stretching, the surface of plasma-treated films can be regarded as being chemically heterogeneous and being composed of treated and untreated parts. On the contrary, by the new surface modification procedure, that is, in situ plasma treatment under stretching, high hydrophilicity and high surface oxygen concentration were found to be maintained even at a high stretching ratio.  相似文献   

20.
Treatment of fluorinated ethylene propylene (FEP) and polytetrafluoroethylene (PTFE) by plasmas established in water vapour or ammonia gas enabled the rapid and facile modification of their surface chemistries. Under comparable plasma conditions, ammonia plasma exposures produced considerably lower air/water contact angles than water vapour plasmas. On storage of samples in air at ambient temperature, contact angles increased markedly within a few days on ammonia plasma-treated samples but remained constant over many weeks on water plasma-treated surfaces. Angle-dependent X-ray photoelectron spectroscopy (XPS) demonstrated a very low depth of modification in the case of ammonia plasma exposure, whereas the oxygen content of water plasma-treated samples was invariant with depth within the XPS analysis region. The long-term stability of water plasma-treated fluorocarbon polymer surfaces is believed to be due to this deep modification which prevents polymer chain reorientation, whereas the shallow modification in ammonia plasmas allows the rapid partial burial of the newly attached chemical groups inside the polymer. When ammonia plasma-treated samples stored in air were immersed in water, the contact angles remained constant, suggesting that the buried groups could not resurface. Contact angle measurements provided a simple and sensitive method for studying the time-dependent reduction in plasma treatment effects and the segmental mobility of modified fluorocarbon polymer surfaces; very shallow reorientation movements can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号