首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilization of industrial waste as substrates for the rhamnolipid synthesis by Pseudomonas aeruginosa is a worthy alternative for conventionally used vegetable oils and fatty acids to reduce the production cost of rhamnolipid. Sunflower acid oil (SAO), a by-product of the oil industry, contains 70% 18:0 fatty acid, with oleic acid as a major component. In this scope, production and analysis of rhamnolipid was successfully demonstrated using SAO as a new substrate. Pseudomonas aeruginosa produced rhamnolipid (a glycolipid biosurfactant) at a maximum concentration of 4.9 g L−1 with 60 g L−1 of SAO in the medium. Structural properties of rhamnolipid biosurfactant are confirmed using thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and fourier transformed infrared spectroscopy (FTIR) analysis. Further surface-active properties of the crude rhamnolipid were evaluated by measuring surface tension and emulsification properties. The synthesized rhamnolipid reduced the surface tension of water to 30.12 mN m−1 and interfacial tension (against heptane) to 0.52 mN m−1. Moreover, rhamnolipid shows the highest emulsification index (above 80%) for vegetable oils. This study confirms the use of SAO as a potential substrate for rhamnolipid production. The synthesized rhamnolipid was incorporated in liquid detergent formulation along with alpha olefin sulfonate (AOS) and sodium lauryl ether sulfate (SLES). The performance properties including foaming and cleaning efficiency of liquid detergent were compared.  相似文献   

2.
Polymers that directly inhibit the growth of microorganisms at their surface are potentially useful. To investigate the feasibility of such materials, poly(styrene) (PS) resin beads that had had poly(ethyleneglycol) (PEG) grafted onto the surface were further derivatized by covalently linking an antimicrobial peptide onto the surface. The antimicrobial peptide was composed of 8 lysine and 7 leucine (6K8L) residues. The resulting surface‐modified polystyrene (SMPS) was microcidal in a concentration and time‐dependent manner against several micro‐organisms including E. coli O157 : H7, L. monocytogenes, S. aureus, P. fluorescens, and K. marxianus when suspended in phosphate buffer. The SMPS inhibited the growth of pathogenic E. coli O157 : H7 in trypticase soy broth. SMPS was bactericidal at pH 3.5 to 7, retained activity after heating to 200°C for 30 min, and could be extensively washed without loss of antimicrobial activity. Bioassays and HPLC analyses of buffer that had been preincubated with SMPS indicated that antimicrobial activity may have been due, at least in part, to the slow release of a peptide–PEG ligand from the PS to the buffer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 609–616, 2001  相似文献   

3.
The potential production of biosurfactant was investigated with a strain of Pseudomonas aeruginosa OCD(1), which was isolated from air in our laboratory. The degradation of different hydrocarbons was studied with this microorganism. The values of surface tension and emulsification index of culture broth were very promising when n-octadecane was used as substrate. Characterization of biosurfactant revealed that the biosurfactant was rhamnolipid in nature. The surface tension of water was reduced to 31.5 mN/m from 72 mN/m with the critical micelle concentration of 35 mg/L. A low rhamnolipid concentration (< 5 mg/L) had a strong effect on reduction of surface tension.  相似文献   

4.
A bioactive platform with a carbon composite electrode was developed for rapid detection of Escherichia coli O157:H7. The porous carbon composite electrode was prepared by a sol-gel method with a mixture of graphite powder and tetraethyl orthosilicate/ethanol. Escherichia coli O157:H7 antibodies were physically adsorbed onto the carbon composite electrode. Direct measurements by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4− as a redox probe showed that the immobilization of antibodies onto the carbon composite electrode surface and the binding of Escherichia coli O157:H7 cells with antibodies systematically increased the electron-transfer resistance. Those results suggest that a sol-gel derived graphite composite electrode might be utilized as a label-free electrochemical immunosensor for diagnosis, biochemical research, food industry, and so on.  相似文献   

5.
Several biosurfactant‐producing bacterial strains were isolated from petroleum‐contaminated soil. The isolate ADMT1, identified as a new strain of Pseudomonas aeruginosa, was selected for further studies on the basis of oil displacement test and emulsification index (E24). The optimal parameters for production, determined by employing Box–Behnken design, were temperature 36.5 °C and pH 7. The environmental isolate ADMT1 produced significant amount of biosurfactant (1.7 g L?1 in 72 h) in minimal salt medium (MSM) using dextrose as the sole carbon source. The E24 value and critical micelle concentration (CMC) of the biosurfactant was 100% and 150 mg L?1, respectively. At CMC, the surface tension of water was reduced to 28.4 mN m?1. The biosurfactant exhibited hemolytic activity and antibacterial activity against 8 reference strains of pathogenic bacteria, including 2 methicillin‐resistant Staphylococcus aureus strains (MRSA ATCC 562 and MRSA ATCC 43300), with minimum inhibitory concentration (MIC) of 0.4 and 0.2 mg mL?1, respectively. The structure of biosurfactant was characterized by FTIR, 1H, and 13C NMR spectroscopy. 7 di‐rhamnolipid (RL) congeners were identified in the biosurfactant by ultraperformance liquid chromatography–mass spectrometry analysis. The major congeners, which constituted 67% of the RL mixture, included Rha‐Rha‐C10‐C10, Rha‐Rha‐C12‐C10, and Rha‐Rha‐C12:1‐C10. The minor congeners were Rha‐Rha‐C10‐C8, Rha‐Rha‐C10:1‐C10, Rha‐Rha‐C10‐C14:1, and Rha‐Rha‐C10‐C14. The congener Rha‐Rha‐C10‐C14 is being reported for the first time from any species of Pseudomonas. The high surface activity and E24 value make the ADMT1‐RL a potential candidate for its use in detergents, environmental bioremediation, and as an emulsifier in the food industry.  相似文献   

6.
Biosurfactants are surfactants biologically produced by microorganisms, presenting several advantages when compared to synthetic surfactants. Pseudomonas aeruginosa is known for producing rhamnolipids, considered one of the most interesting types of biosurfactants due to their high yields, when compared to other types. In this work, the production of rhamnolipid from P. aeruginosa was optimized. At first, the Plackett–Burman design was used to select most significant variables affecting the biosurfactant production yield among nine variables—carbon–nitrogen ratio, carbon concentration, nitrogen source, pH, cultivation time, potassium and magnesium concentrations, agitation, and temperature. Then, using main variables, a central point experimental design aiming to optimize rhamnolipid production was performed. The maximum biosurfactant concentration obtained was 0.877 mg L−1. The rhamnolipid also displayed a great emulsification rate, reaching approximately 67%, and the ability to reduce water surface tension from 72.02 to 35.26 mN m−1 at a critical micelle concentration (CMC) of 127 mg L−1, in addition to presenting a good stability when exposed to wide pH and salinity ranges. The results suggest that rhamnolipids are promising substitutes for synthetic surfactants, especially due to lower impacts on the environment.  相似文献   

7.
Pseudomonas aeruginosa RS29, the native biosurfactant-producing strain isolated from the oil fields of Assam, India was used to investigate the influence of the carbon nitrogen ratio on production of the biosurfactant. The biosurfactant producing ability of the strain was measured based on surface tension (ST) reduction of the culture medium and the emulsification (E24) index. Production was greatly influenced by the sources of nitrogen and carbon as well as the carbon to nitrogen (C/N) ratio. Sodium nitrate was the best nitrogen source and the water miscible carbon source, glycerol was observed as the best carbon source for maximum biosurfactant production. The C/N ratio 12.5 allowed the maximum production of biosurfactant by the RS29 strain. At this C/N ratio, 55 % ST of the culture medium was reduced by the produced biosurfactant. Concentrations of crude and rhamnolipid biosurfactant obtained at this particular C/N ratio were 5.6 and 0.8 g/l respectively. The RS29 strain was novel as it was able to produce a sufficient amount of biosurfactant utilizing a much lower amount of the water miscible carbon source, glycerol. Extraction of the biosurfactant by a chloroform–methanol (2:1) mixture was the best method to obtain the highest biosurfactant from the culture medium of the strain. The biosurfactant was confirmed as a mixture of mono and di-rhamnolipid congeners, Rha–C10–C10–CH3 being the most abundant one. The biosurfactant was a good foaming and emulsifying agent.  相似文献   

8.
An optical assay based on CdSe/ZnS quantum dots (QD)/NH2-Apt bioconjugates for the pathogen detection was presented. QDs with carboxyl functional groups and 72-mer aptamer (against E. coli outer membrane proteins) were used as probes and sensing element. E. coli O157:H7 was selected as a model pathogen and 96-well plate assay in the sandwich hybridization format was constructed. Poly-L-lysine-coated 96-well plate surfaces were used as support material where thiol functionalized aptamers were immobilized by 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide (sulfo-SMCC). After incubation with the bacteria, CdSe/ZnS QDs/aptamer bioconjugates were added. The fluorescence signals were followed before and after addition of bioconjugates. Probe concentrations, incubation time with E. coli O157:H7 were also optimized. The bioassay could detect the pathogen down to 102 CFU/mL with high selectivity. The detection system was successfully employed in samples, in the presence of interfering compounds.  相似文献   

9.
In this paper, we describe an application of mono- and dirhamnolipid homologue mixtures of a biosurfactant as a green agent for destabilisation of a dolomite suspension. Properties of the biosurfactant solution were characterised using surface tension and aggregate measurements to prove aggregation of rhamnolipids at concentrations much lower than the critical micelle concentration. Based on this information, the adsorption process of biosurfactant molecules on the surface of the carbonate mineral dolomite was investigated, and the adsorption mechanism was proposed. The stability of the dolomite suspension after rhamnolipid adsorption was investigated by turbidimetry. The critical concentration of rhamnolipid at which destabilisation of the suspension occurred most effectively was found to be 50 mg·dm−3. By analysing backscattering profiles, solid-phase migration velocities were calculated. With different amounts of biomolecules, this parameter can be modified from 6.66 to 20.29 mm·h−1. Our study indicates that the dolomite suspension is destabilised by hydrophobic coagulation, which was proved by examining the wetting angle of the mineral surface using the captive bubble technique. The relatively low amount of biosurfactant used to destabilise the system indicates the potential application of this technology for water treatment or modification of the hydrophobicity of mineral surfaces in mineral engineering.  相似文献   

10.
Two N‐halamine siloxane precursors, 5,5‐dimethyl‐3‐(3′‐triethoxysilylpropyl)hydantoin and 3‐(3′‐triethoxysilylpropyl)‐7,7,9,9‐tetramethyl‐1,3,8‐triazaspiro[4.5]decane‐2,4‐dione, have been synthesized and coated onto polyester fiber surfaces. The coated polyester was rendered biocidal after exposure to household bleach solution by converting the heterocyclic precursors to N‐halamine moieties. The thermal properties of these coated polyester samples were determined with differential scanning calorimetry. The chlorinated polyester swatches were challenged with Staphylococcus aureus (ATCC 6538) and Escherichia coli O157 : H7 (ATCC 43895) with contact times ranging from 1 to 30 min. The biocidal testing showed that the chlorinated samples inactivated S. aureus and E. coli O157 : H7 within 5 and 30 min of contact, respectively. Standard washing tests indicated that the chlorinated coated fibers were very resistant to loss of the coating through hydrolyses. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
鼠李糖脂在石油工业中的应用研究进展   总被引:1,自引:0,他引:1  
鼠李糖脂是一种具有良好乳化作用、增溶作用以及可降低界面张力的生物表面活性剂。介绍了鼠李糖脂的结构及生产方法,综述了鼠李糖脂在石油工业中应用的研究进展,探讨了目前的研究热点及存在的问题,展望了鼠李糖脂今后的发展方向。  相似文献   

12.
Crosslinked chloromethylated polystyrene beads were reacted with hydantoin and imidazolidinone derivatives to produce functionalized beads which could be rendered biocidal upon reaction with free chlorine or bromine. The biocidal efficacies of the N‐chlorinated, and in one case, the N‐brominated polymeric beads against Staphylococcus aureus and Escherichia coli O157:H7 in aqueous suspension have been determined. Synthetic methods and test data have been presented. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 368–372, 2004  相似文献   

13.
Production of a rhamnolipid biosurfactant (RBS) using discarded mixed bakery waste (BW) employing bacterial strain Pseudomonas aeruginosa strain PG1 (identified by 16 s rDNA sequencing) was investigated for bioconversion of the food waste. Dry and powder form BW was supplemented with mineral salt media (MSM) as a sole carbon source for production of RBS. RBS production was measured based on the drop collapse assay and surface tension (ST) reduction of the culture media. Production of RBS in the culture media was enhanced by optimizing the carbon source (BW) concentration and the proper nitrogen source along with the pH of the MSM. Under optimized culture conditions, 11.56 g L−1 day−1 crude biosurfactant (BS) was achieved. The RBS had the ability to reduce the ST of the optimized MSM from 72.0 to 25.8 mN m−1 during culture, where the critical micelle concentration (CMC) of the biosurfactant was found to be 100 mg L−1. Liquid Chromatography Mass Spectroscopy (LC-MS), Fourier Transform Infrared spectroscopy (FTIR), and scanning electron microscopy (SEM)–energy dispersive X-ray spectroscopy (EDS) analyses of the purified BS confirmed that it is of rhamnolipid in nature and it is made up of both monorhamnolipid and dirhamnolipid congeners. Furthermore, the RBS did not express any cytotoxic effect on the cell line of mouse L292 fibroblastic cell indicating the biosafety nature of the high-value biomolecule.  相似文献   

14.
In many developing countries, proper hygiene is not strictly implemented when animals are slaughtered and meat products become contaminated. Contaminated meat may contain Escherichia coli (E. coli) O157:H7 that could cause diseases in humans if these food products are consumed undercooked. In the present study, a total of 94 confirmed E. coli O157:H7 isolates were subjected to the enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR) typing to generate genetic fingerprints. The ERIC fragments were resolved by electrophoresis on 2% (w/v) agarose gels. The presence, absence and intensity of band data were obtained, exported to Microsoft Excel (Microsoft Office 2003) and used to generate a data matrix. The unweighted pair group method with arithmetic mean (UPGMA) and complete linkage algorithms were used to analyze the percentage of similarity and matrix data. Relationships between the various profiles and/or lanes were expressed as dendrograms. Data from groups of related lanes were compiled and reported on cluster tables. ERIC fragments ranged from one to 15 per isolate, and their sizes varied from 0.25 to 0.771 kb. A large proportion of the isolates produced an ERIC banding pattern with three duplets ranging in sizes from 0.408 to 0.628 kb. Eight major clusters (I–VIII) were identified. Overall, the remarkable similarities (72% to 91%) between the ERIC profiles for the isolate from animal species and their corresponding food products indicated some form of contamination, which may not exclude those at the level of the abattoirs. These results reveal that ERIC PCR analysis can be reliable in comparing the genetic profiles of E. coli O157:H7 from different sources in the North-West Province of South Africa.  相似文献   

15.
BACKGROUND: The study is focused on (i) screening and taxonomic identity of a bacterial strain for biosurfactant production, and (ii) evaluation of its potential for production of a biosurfactant using agro‐based feedstock(s) and characterization of it for application in the removal of heavy metals. RESULTS: The production of biosurfactant by an isolate Pseudomonas aeruginosa AB4 (identified on the basis of 16S rRNA analysis) using various cost‐effective substrates were examined at conditions 40 °C, 120 rpm for 7 days. It revealed maximum (40 gL?1) rhamnolipids production and 46% reduction of initial surface tension. Its optimum production was achieved at (i) C:N ratio 10:0.6, (ii) pH 8.5 and (iii) 40 °C. The cell–free supernatant examined for biosurfactant activity by (i) haemolytic assay, (ii) CTAB‐ methylene blue assay, (iii) drop collapse test, (iv) oil spreading technique and (v) EI 24 assay showed its glycolipid nature and stable emulsification. Analysis of partially purified rhamnolipids by (i) thin layer chromatography (TLC), (ii) high performance thin layer chromatography (HPTLC), (iii) high performance liquid chromatography (HPLC), (iv) Fourier transform infrared (FT‐IR) and (v) gas chromatography–mass spectrometry (GC‐MS) confirmed its structure as methyl ester of 3‐hydroxy decanoic acid (a glycolipid) with two major structural congeners (Rha‐C10‐C10 and Rha‐C10‐C8) of mono‐rhamnolipids. Finally, it showed sequestration of Cd and Pb, suggesting its application in biosurfactant‐assisted heavy metal bioremediation. CONCLUSION: This work has screened and identified a bacterium with superior biosurfactant production capabilities, characterized the glycolipidic biosurfactants as rhamnolipid and indicated the feasibility of biosurfactant production using novel renewable, relatively inexpensive and easily available resources such as non‐edible vegetable de‐oiled seed cakes and showed its utility in remediation of heavy metals. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Epoxidized soybean oil (ESO) was converted to a polysoap (PESO) via a two‐step synthetic procedure of catalytic ring‐opening polymerization, followed by hydrolysis (HPESO) with a base. Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst concentration. In addition, the counter ion chemistry was varied by changing the base used for saponification. The PESO and HPESO products were carefully characterized and identified using a combination of FTIR, 1H‐NMR, solid state 13C‐NMR, and GPC. The effect of HPESO polysoaps on the surface tension of water and the interfacial tension of water‐hexadecane was investigated as a function of HPESO concentration, molecular weight, and counter ion chemistry. HPESO polysoaps were effective at lowering the surface tension of water and the interfacial tension of water‐hexadecane and displayed minimum values in the range of 20–24 and 12–17 dyn/cm, respectively, at concentration of 200–250 μM. Water‐hexadecane interfacial tension was also calculated from measured surface tension data using the Antonoff, harmonic mean (HM), and geometric mean (GM) methods. Measured values agreed well with those calculated using the HM and GM methods, but not the Antonoff method. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Surface and interfacial tension isotherms for narrow-range distribution ALFOL 1214 alcohol oxyethylates were determined and compared with those obtained for broad-range alcohol oxyethylates. Various adsorption parameters were estimated. The effectiveness of surface tension reduction decreases when the length of polyoxyethylene hydrophile increases. Micellization is observed at log cmc ranging from −4.7 to −3.3. Effects of the length and distribution of the polyoxyethylene chain on cmc are very small. A minimum of A min/N av 0.5 is obtained for N av=8, where A min and N av denote the minimum interfacial area occupied by a statistical molecule at the saturated interface and the average degree of oxyethylation, respectively. The interface becomes saturated at pC 20=−5.61±0.35, where pC 20 denotes the logarithm of concentration required to obtain the surface pressure equal to 20 mNm−1. The highest and lowest values of the surface excess at saturation and the free energy of adsorption, respectively, are obtained for an average degree of oxyethylation equal to 8. Parameters are correlated with the average degree of oxyethylation and the oxyethylene chain distribution parameter according to empirical second-order polynomials. Small differences in adsorption abilities at the water/air interface are only observed for narrow- and broad-range distributed oxyethylates. The differences become important for adsorption at the hexadecane/water interface. The lowest values of interfacial tension are obtained for narrow-range oxyethylates with N av=7 and 8. The Krefeld fabric detergency tests indicated that the best detergency was observed for alcohol oxyethylates with N av=5–7. Narrow-range oxyethylates exhibit somewhat better washing abilities than the broad-range products. No relationship between detergency of alcohol oxyethylates and their abilities to adsorb at the water/air and water/hydrocarbon interfaces is observed.  相似文献   

18.
Herein we reported the development of aptamer-based biosensors (aptasensors) based on label-free aptamers and gold nanoparticles (AuNPs) for detection of Escherichia coli (E. coli) O157:H7 and Salmonella typhimurium. Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to capture target bacteria, and the detection was accomplished by target bacteria-induced aggregation of the aptasensor which is associated as red-to-purple color change upon high-salt conditions. By employing anti-E. coli O157:H7 aptamer and anti-S. typhimurium aptamer, we developed a convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis. The aptasensor could detect as low as 105colony-forming units (CFU)/ml target bacteria within 20 min or less and its specificity was 100%. This novel method has a great potential application in rapid detection of bacteria in the near future.  相似文献   

19.
A water dispersible terpolymer of [2‐(methacryloyloxy)ethyl]trimethylammonium chloride, glycidyl methacrylate and hydantoinyl acrylamide was synthesized and coated on poly(ethylene terephthalate) fabrics through a pad‐dry‐cure procedure. The coatings were rendered biocidal upon exposure to dilute household bleach solution. The halogenated fabrics exhibited great antimicrobial functionality with about six logs inactivation of S. aureus and E. coli O157:H7 within only two min of contact time. Moreover, the coatings were found to be very stable against repeated washings and UVA light exposure. It was shown that [2‐(methacryloyloxy)ethyl]trimethylammonium monomer is very useful in preparing waterborne N‐halamines which can impart rechargeable, effective, and stable antimicrobial coatings to poly(ethylene terephthalate) fabrics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43088.  相似文献   

20.
To achieve biocidal properties, a cyclic N‐halamine precursor, 7,7,9,9‐tetramethyl‐1,3,8‐triazaspiro[4.5]‐decane‐2,4‐dione (TTDD), was synthesized and introduced into nanosized polyacrylonitrile fibrous mat by an electrospinning technique. It was rendered antimicrobial by exposure to dilute hypochlorite solution. Synthesis routes and characterization data are presented. Scanning electron microscopy (SEM) demonstrated that the ultrafine fiber possessed average diameter 414 nm (from 240 to 650 nm). The chlorinated nanofibrous composites provided about 4.9 log reductions of both Gram‐positive bacteria Staphylococcus aureus (ATCC 6538) and Gram‐negative bacteria Escherichia coli O157:H7 (ATCC 43895) within 5 min of contact time. This is indicative of promising possible applications in the filtration of water and air. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号