首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Advanced Robotics》2013,27(8):905-930
This paper presents a novel vision-based hybrid controller for parking of mobile robots. Parking or docking is an essential behavioral unit for autonomous robots. The proposed hybrid controller comprises a discrete event controller to change the direction of travel and a pixel error-driven proportional controller to generate motion commands to achieve the continuous motion. At the velocity control level, the robot is driven using a built-in PID control system. The feedback system uses image plane measurements in pixel units to perform image-based visual servoing (IBVS). The constraints imposed due to the non-holonomic nature of the robot and the limited field of view of the camera are taken into account in designing the IBVS-based controller. The controller continuously compares the current view of the parking station against the reference view until the desired parking condition is achieved. A comprehensive analysis is provided to prove the convergence of the proposed method. Once the parking behavior is invoked, the robot has the ability to start from any arbitrary position to achieve successful parking given that initially the parking station is in the robot's field of view. As the method is purely based on vision the hybrid controller does not require any position information (or localization) of the robot. Using the Pioneer 3AT robot, several experiments are carried out to authenticate the method. The experimental system has the ability to achieve the parking state and align laterally within ±0.5 cm of the target pose.  相似文献   

3.
《Advanced Robotics》2013,27(5):473-496
It can be exhausting, both physically and emotionally, to assist physically handicapped persons. Therefore, an assistive mobile system called AMOS (Assistive MObile robot System) has been developed to help alleviate this burden. The purpose of AMOS is to pick up and transport daily use objects, placing them in a designated indoor location semi-autonomously. AMOS consists of a self-contained mobile robot body, a user interface with a touch-panel and a computer network (Ethernet LAN, Internet). The user interacts with the mobile robot through a Web browser connected to a computer network, allowing for communication anytime, from anywhere and by anyone. This mode provides a simple way for communicating with and determining the status of the robot. Experiments were performed to verify the successful operation of AMOS. Although the system performed as designed, it would prove useful to the extend service area of the robot through communication mechanisms and the user interface.  相似文献   

4.
《Advanced Robotics》2013,27(3):311-329
Rescue robots have proved to be an extremely useful work partner for urban search and rescue (USAR) missions. Human rescuers who carry out these missions frequently enter dangerous zones to search for survivors; however, due to the unstable nature of collapsed buildings or objects, their lives may also be threatened. For this reason, in order to reduce life-threatening risks, rescue robots are deployed to carry out the job instead. Rescuers can now operate the robots at a safe place while the missions are carried out. When the robots have gathered enough information about the location of the victims and data about their physical conditions, rescuers can then enter the disaster site with enough knowledge to avoid harm and rescue the victims in the shortest time possible. In this paper, we introduce examples of 'effective multiple robot cooperative activities' and 'a study of the number of robots and operators in a multi-robot team' from our experiences gained from participating in RoboCup Rescue competitions.  相似文献   

5.
《Advanced Robotics》2013,27(8):739-760
A novel design of a mobile wheelchair robot for all terrains, especially for staircases and inclines, is proposed. Toachieve the required locomotion, a pair of multi-limbed structures, comprised of a lift coxae, rotation femurs and support tibiae, are pivotally mounted on the opposite sides of the body and actuated to rotate through epicyclic gear trains. A dual-footing mode with a set of wheel and crawler tractors in each support tibia permits the locomotion mode depending on various terrains, and hence the mobile wheelchair robot can navigate on a flat surface, and climb up and down stairs or inclines with its body kept horizontal. The implemented design is verified experimentally using our first manufactured prototype mobile wheelchair robot and it is shown that it could be suitable for applications to wheelchairs or others.  相似文献   

6.
《Advanced Robotics》2013,27(6):655-679
For the first time, a novel experimental hydraulic system that simulates joint flexibility of a single-rigid-link flexible-joint robot manipulator, with the ability of changing the joint flexibility's parameters, was designed and implemented in this study. Such a system could facilitate future control studies of robot manipulators by reducing investigation time and implementation cost of research. It could also be used to test the performance of different strategies to control the movement of flexible-joint manipulators. A hydraulic rotary servo motor was used to simulate the action of a flexible-joint robot manipulator, which was a challenging task, since the control of angular acceleration was required. In this study, a single-rigid-link elastic-joint robot manipulator was mathematically modeled and implemented in which joint flexibility parameters such as stiffness and damping could be easily changed. This simulation is referred to as a 'function generator' to drive a hydraulic robot manipulator. In this study the desired angular acceleration of the manipulator was used as the input to the hydraulic rotary motor and the objective was to make the hydraulic system follow the desired acceleration in the frequency range specified. A hydraulic actuator robot was built and tested. The results indicated that if the input signal had a frequency in the range of 5–15 Hz and damping ratio of 0.1 (typical values for flexible joints), the experimental setup was able to reproduce the input signal with acceptable accuracy. Owing to the inherent noise associated with the measurement of acceleration and some severe nonlinearities in the rotary motor, control of the experimental test system using classical methods was a challenging task that had not been anticipated.  相似文献   

7.
8.
《Advanced Robotics》2013,27(9):1031-1050
This paper presents a novel algorithm for simultaneous localization and mapping (SLAM) of mobile robots. The algorithm, termed Evolutionary SLAM, is based on an island model genetic algorithm (IGA). The IGA searches for the most probable map(s) such that the underlying robot's pose(s) provide(s) a robot with the best localization information. The correspondence problem in SLAM is solved by exploiting the property of natural selection, to support only better-performing individuals to survive. The algorithm does not follow any explicit heuristics for loop closure, rather it maintains multiple hypotheses to solve the loop-closing problem. The algorithm processes sensor data incrementally and, therefore, has the capability to work online. Experimental results in different indoor environments validate the robustness of the proposed algorithm.  相似文献   

9.
10.
《Advanced Robotics》2013,27(2):213-232
Rescue activities at disaster sites often require the remote control of construction machinery to ensure the safety of the workers. A pneumatic 6-d.o.f. robot arm was developed to achieve the remote control of construction machinery. A lightweight fiber-knitted-type pneumatic artificial rubber muscle was selected as the actuator for the arm after considering portability and installation issues. A control system was then designed to remotely operate the pneumatic robot arms. The system consists of the slave and master side. The slave side is composed of two robot arms, a control box, a power generator and an air compressor. The master side consists of two joysticks and a laptop PC. A wireless LAN was employed to achieve the remote control. Construction machinery was retrofitted with the pneumatic robot and field tests were performed at a real construction site. The operation times using remote control and direct operation were compared. The results confirmed the effectiveness of the proposed system.  相似文献   

11.
《Advanced Robotics》2013,27(1):87-102
In this paper, a new method using the Hough transform to correct the drift of the mobile robot CESA is presented. The corrections are made by direct observation. As an illustration, an algorithm implemented is detailed, and experiment results for CESA navigation in our laboratory's corridor and trajectory generation are given.  相似文献   

12.
《Advanced Robotics》2013,27(5-6):645-659
In this paper, we present a control law for a non-holonomic mobile robot that achieves path following. In the path-following problem, the objective is to control the angular velocity of the robot so that the robot tracks a given reference trajectory. In this paper, we propose a control law that achieves path following in the presence of a constraint on the angular velocity. By applying the proposed control law, the robot can track the reference trajectory even if the distance from the initial position of the robot and the reference trajectory is arbitrary large. Further, we extend the control law so that the linear velocity of the robot becomes small when the robot passes through corners. By using the control algorithm, we can prevent the angular velocity of the robot becoming extremely large when the robot passes through corners. Numerical examples are provided to illustrate the effectiveness of the proposed methods.  相似文献   

13.
《Advanced Robotics》2013,27(6):611-635
This paper describes outdoor navigation for a mobile robot by using differential GPS (DGPS) and odometry in a campus walkway environment. The robot position is estimated by fusion of DGPS and odometry. The GPS receiver measures its position by radio waves from GPS satellites. The error of GPS measurement data increases near high buildings and trees because of multi-path and forward diffractions. Thus, it is necessary to pick up only accurate DGPS measurement data when the robot position is modified by fusing DGPS and odometry. In this paper, typical DGPS measurement data observed near high buildings and trees are reported. Then, the authors propose a novel position correction method by fusing GPS and odometry. Fusion of DGPS and odometry is realized using an extended Kalman filter framework. Moreover, outdoor navigation for a mobile robot is accomplished by using the proposed correction method.  相似文献   

14.
《Advanced Robotics》2013,27(6):675-694
Selecting an appropriate gait can reduce consumed energy by a biped robot. In this paper, a Genetic Algorithm gait synthesis method is proposed, which generates the angle trajectories based on the minimum consumed energy and minimum torque change. The gait synthesis is considered for two cases: walking and going up-stairs. The proposed method can be applied for a wide range of step lengths and step times during walking; or step lengths, stair heights and step times for going up-stairs. The angle trajectories are generated without neglecting the stability of the biped robot. The angle trajectories can be generated for other tasks to be performed by the biped robot, like going down-stairs, overcoming obstacles, etc. In order to verify the effectiveness of the proposed method, the results for minimum consumed energy and minimum torque change are compared. A Radial Basis Function Neural Network is considered for the real-time application. Simulations are realized based upon the parameters of the 'Bonten-Maru I'humanoid robot, which is under development in our laboratory. The evaluation by simulations shows that the proposed method has a good performance.  相似文献   

15.
《Advanced Robotics》2013,27(7):725-748
An evolutionary technique with a Fuzzy Inference System (FIS) is offered for planning time-optimal trajectories on a predefined Visibility Graph Method Dijkstra (VGM-D) path of a Nomad 200 mobile robot (MR). First of all, the segmented trajectory is generated by the VGM-D algorithm. Line and curve segments are the components of the trajectory. The number of intersections of the segmented VGM-D path determines the curve segments number. It is assumed that, at each curve segment, translation velocity v t is taken as constant. The Differential Evolution (DE) algorithm finds v t values of all the curve segments, which minimize the trajectory tracking time. Line segments lengths are used to calculate the constraints of the problem according to the Nomad 200's limitations on the translation velocity and acceleration/deceleration. The structures of the curve segments are modeled by FIS to decrease the DE's execution time. Another FIS model is used to define the upper bound of the translation velocities on the curve segments for the same purpose. Both FIS models are trained by the adapted-network-based fuzzy inference system (ANFIS). Experiments are successfully implemented on the Nomad 200 MR.  相似文献   

16.
《Advanced Robotics》2013,27(6):635-650
This paper presents the development of a steerable, wheel-type, in-pipe robot and its path planning. First, we show the construction of the robot and demonstrate its locomotion inside a pipe. The robot is composed of two wheel frames and an extendable arm which links the centers of the two wheel frames. The arm presses the frames against the interior wall of a pipe to support the robot. The wheels of the frames are steered independently so that the robot can turn within a small radius of rotation. Experimental results of the locomotion show that the steering control is effective for autonomous navigation to avoid obstacles and to enter the joint spaces of L- and T-shaped pipes. Generally, autonomous navigation is difficult for wheel-type robots because the steering angles required to travel along a desired path are not easily determined. In our previous work, the relationship between the steering angles and locomotion trajectories in a pipe has already been analyzed. Using this analysis, we propose the path planning in pipes.  相似文献   

17.
《Advanced Robotics》2013,27(6):737-762
Latest advances in hardware technology and state-of-the-art of mobile robots and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. A mobile service robot requires the perception of its present position to co-exist with humans and support humans effectively in populated environments. To realize this, a robot needs to keep track of relevant changes in the environment. This paper proposes localization of a mobile robot using images recognized by distributed intelligent networked devices in intelligent space (ISpace) in order to achieve these goals. This scheme combines data from the observed position, using dead-reckoning sensors, and the estimated position, using images of moving objects, such as a walking human captured by a camera system, to determine the location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the ISpace. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated robot's position are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used for the estimation of the mobile robot location. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in determining the location of a mobile robot, and its performance is verified by computer simulation and experiment.  相似文献   

18.
《Advanced Robotics》2013,27(2):165-178
This paper describes a humanoid robot system that can capture and mimic the motion of human body parts in real-time. The underlying vision system is able to automatically detect and track human body parts such as hands and faces in images captured by the robot's eyes. It is based on a probabilistic approach that can detect and track multiple blobs in a 60-Hz stereo image stream on a standard dual processor PC. A random jerk model is employed to approximate the observed human motion and a Kalman filter is used to estimate its parameters (three-dimensional positions, velocities and accelerations). This enables the system to realistically mimic the perceived motion in real-time.  相似文献   

19.
The underground building environment plays an increasingly important role in the construction of modern cities. To deal with possible fires, collapses, and so on, in underground building space, it is a general trend to use rescue robots to replace humans. This paper proposes a dual-robot system solution for search and rescue in an underground building environment. To speed up rescue and search, the two robots focus on different tasks. However, the environmental perception information and location of them are shared. The primary robot is used to quickly explore the environment in a wide range, identify objects, cross difficult obstacles, and so on. The secondary robot is responsible for grabbing, carrying items, clearing obstacles, and so on. In response to the difficulty of rescue caused by unknown scenes, the Lidar, inertial measurement unit and multiview cameras are integrated for large-scale 3D environment mapping. The depth camera detects the objects to be rescued and locate them on the map. A six-degree-of-freedom manipulator with a two-finger gripper is equipped to open doors and clear roadblocks during the rescue. To solve the problem of severe signal attenuation caused by reinforced concrete walls, corners and long-distance transmission, a wireless multinode networking solution is adopted. In the case of a weak wireless signal, the primary robot uses autonomous exploration for environmental perception. Experimental results show the robots' system has high reliability in over-the-horizon maneuvering, teleoperation of the door opening and grasping, object searching, and environmental perception, and can be well applied to underground search and rescue.  相似文献   

20.
Huatao Zhang 《Advanced Robotics》2014,28(23):1571-1585
Tipover may cause fatal damages to the mobile robot system during obstacle crossing or stair climbing, and the system centroid position (SCP) is very important for the tipover stability. By monitoring the SCP, it is possible to estimate the risk of tipover and take appropriate actions to prevent the incident from happening. This paper proposes a new tipover avoidance method for enhancing the tipover stability of a tracked mobile manipulator by online adjusting the SCP. The tipover stability criteria for the robot are discussed based on the orientation data from a three-axial gyroscope and the SCP calculation. The velocity kinematic model of the manipulator for SCP adjustment is also presented in this paper. In addition, a redundancy resolution method is employed in order to improve the performance of the robot. The proposed method is applied to a search and rescue robot consists of a four degree of freedom manipulator and a tracked mobile base, and the effectiveness of this method is demonstrated by experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号