首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a visually based autopilot which is able to make an air vehicle automatically take off, cruise and land, while reacting appropriately to wind disturbances (head wind and tail wind). This autopilot consists of a visual control system that adjusts the thrust so as to keep the downward optic flow (OF) at a constant value. This autopilot is therefore based on an optic flow regulation loop. It makes use of a sensor, which is known as an elementary motion detector (EMD). The functional structure of this EMD was inspired by that of the housefly, which was previously investigated at our Laboratory by performing electrophysiological recordings while applying optical microstimuli to single photoreceptor cells of the insect's compound eye.

We built a proof-of-concept, tethered rotorcraft that circles indoors over an environment composed of contrasting features randomly arranged on the floor. The autopilot, which we have called OCTAVE (Optic flow based Control sysTem for Aerial VEhicles), enables this miniature (100 g) rotorcraft to carry out complex tasks such as ground avoidance and terrain following, to control risky maneuvers such as automatic take off and automatic landing, and to respond appropriately to wind disturbances. A single visuomotor control loop suffices to perform all these reputedly demanding tasks. As the electronic processing system required is extremely light-weight (only a few grams), it can be mounted on-board micro-air vehicles (MAVs) as well as larger unmanned air vehicles (UAVs) or even submarines and autonomous underwater vehicles (AUVs). But the OCTAVE autopilot could also provide guidance and/or warning signals to prevent the pilots of manned aircraft from colliding with shallow terrain, for example.  相似文献   


2.
《Advanced Robotics》2013,27(4):481-496
This paper describes the implementation details, advantages and potential applications of autonomous tethered mobile robot systems using the 'hyper-tether' concept. Hyper-tether is a new research area on tethered connections, which provide tethering among different mobile robot types, such as a robot with the environment and a robot with humans and animals. Its basic function is to actively control the tether's tension and/or length, but it also considers tether launching, anchoring, power delivery, data communication cabling and built-in trajectory command generation capabilities. Many of these features can be efficiently applied to build a tethered mobile robot system which remotely manipulates a working tool that can be useful for land-mine detection and removal, trimming of gardens and grass cutting of wide areas (e.g. golf courses, soccer and baseball fields), spraying of agricultural chemicals, forestry and construction works, etc. In this paper, a simple prototype of hypertether's winch-tether pair and a working tool equipped with a grass cutter was constructed, and basic experiments were performed to demonstrate the validity of the proposed system.  相似文献   

3.
《Ergonomics》2012,55(8):940-950
A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workloadwere also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability.

The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community.  相似文献   

4.
《Advanced Robotics》2013,27(10):1165-1181
Cognitive scientists and developmental psychologists have suggested that development in perceptual, motor and memory functions of human infants as well as adaptive evaluation by caregivers facilitate learning for cognitive tasks by infants. This article presents a robotic approach to understanding the mechanism of how learning for joint attention can be helped by such functional development. A robot learns visuomotor mapping needed to achieve joint attention based on evaluations from a caregiver. The caregiver adjusts the criterion for evaluating the robot's performance from easy to difficult as the performance improves. At the same time, the robot also gradually develops its visual function by sharpening input images. Experiments reveal that the adaptive evaluation by the caregiver accelerates the robot's learning and that the visual development in the robot improves the accuracy of joint attention tasks due to its well-structured visuomotor mapping. These results constructively explain what roles synchronized functional development in infants and caregivers play in task learning by infants.  相似文献   

5.
Stabilizing the visual system is a crucial issue for any sighted mobile creature, whether it will be natural or artificial. The more immune the gaze of an animal or a robot is to various kinds of disturbances (e.g., those created by body or head movements when walking or flying), the less troublesome it will be for the visual system to carry out its many information processing tasks. The gaze control system that we describe in this paper takes a lesson from the Vestibulo-Ocular Reflex (VOR), which is known to contribute to stabilizing the human gaze and keeping the retinal image steady. The gaze control system owes its originality and its high performances to the combination of two sensory modalities, as follows:
• a visual sensor called Optical Sensor for the Control of Autonomous Robots (OSCAR) which delivers a retinal angular position signal. A new, miniature (10 g), piezo-based version of this visual sensor is presented here;

• an inertial sensor which delivers an angular head velocity signal.

We built a miniature (30 g), one degree of freedom oculomotor mechanism equipped with a micro-rate gyro and the new version of the OSCAR visual sensor. The gaze controller involves a feedback control system based on the retinal position error measurement and a feedforward control system based on the angular head velocity measurement. The feedforward control system triggers a high-speed “Vestibulo-ocular reflex” that efficiently and rapidly compensates for any rotational disturbances of the head. We show that a fast rotational step perturbation (3° in 40 ms) applied to the head is almost completely (90%) rejected within a very short time (70 ms). Sinusoidal head perturbations are also rapidly compensated for, thus keeping the gaze stabilized on its target (an edge) within a 10 times smaller angular range than the perturbing head rotations, which were applied here at frequencies of up to 6 Hz in an amplitude range of up to 6°. This high standard of performance in terms of head rotational disturbance rejection is comparable to that afforded by the human vestibulo-oculomotor system.  相似文献   


6.
Robot performance measurements using automatic laser tracking techniques   总被引:5,自引:0,他引:5  
This paper describes two laser tracking techniques currently under development at the National Bureau of Standards for robot performance measurements. Tests indicate that the system can be used in real-time to determine the three-dimensional static and dynamic positioning accuracy of a robot end-effector to a few parts in 100,000 (i.e. 12.5–50 μm for a medium to large size robot), and wrist orientations to within 2 sec of arc. Both systems would be simple and compact enough to be considered as a general-purpose portable calibrating tool for robots (or CNC machines), or as an integral part of a robotic system providing real-time position feedback of the end-effector independent of the position and angle feedback of joint members. The ability to dynamically and statistically measure the position of an end-effector to the above accuracy has significant ramifications with regard to meaningful robot performance measurements, and the potential of these systems in other industrial and engineering applications.  相似文献   

7.
针对输电线路树障清理作业任务对空中机器人平台稳定性、平动性和抗扰性的高要求,为克服传统平面配置多旋翼无人机姿态配合式位置移动的缺点,本文在全驱动多旋翼飞行器设计思想的启发下,提出并设计了一种无需姿态配合即可实现前后平移运动的非平面作业型多旋翼空中机器人.首先分别建立其姿态的运动学和动力学模型,然后采用自抗扰控制技术设计了该机器人的位置和姿态跟踪控制律.多组仿真和样机实验结果表明,本文所设计的非平面配置旋翼空中机器人在作业过程中的接触力扰动下具有良好稳定性、平动性和抗扰性.  相似文献   

8.
In this article, a nonlinear tracking controller is designed based on Lyapunov stability for a novel aerial robot. The proposed 6‐rotor configuration improves stability and payload lifting capacity of the robot compared with conventional quadrotors while avoiding further complexities in the robot dynamics and steering principles. The dynamical model of the robot is derived using Newton‐Euler method. The model represents a nonlinear, coupled, and underactuated system. The proposed control strategy includes 2 main parts: an attitude controller and a position controller. Both the attitude and position controls are Lyapunov‐based nonlinear tracking controllers that guarantee the asymptotic convergence of the states' tracking errors to zero. Simulation results are presented to illustrate appropriate performance of the closed‐loop system in terms of position/attitude tracking even in the presence of wind disturbance.  相似文献   

9.
为了兼顾膜控制器控制下的移动机器人行走速度和避障效果,提出了一种基于酶数值膜系统的自适应巡航速度避障控制方法.该方法采用酶数值膜系统结构,利用膜之间的信息交流,实现多个膜融合多个传感器的距离信息,根据融合距离信息自适应调节巡航速度,使移动机器人能够有效的避开障碍物,同时兼顾无障碍物时移动机器人行走速度.基于移动机器人Pioneer3-DX的仿真和实物实验表明:该方法设计的酶数值膜控制器可行且避障控制效果更优.  相似文献   

10.
异构多机器人系统可以发挥单一结构机器人在某个领域的优点而达到整体的最优配置,机器人的功能和接口协议对协作系统影响很大.IGRS协议是我国在信息设备协作领域中惟一的国际标准,为异构多机器人协作提供了有效的支持.对国内外相关研究进行系统地归纳和总结,找出需要解决的问题,并在课题组研制的多种机器人平台上,从3个方面阐述了基于IGRS协议的异构多机器人协作系统:异构机器人的定位、通信以及感知方案;异构机器人协商策略和分组方案;机器人的功能分类和规划,提出了细粒度可控的任务委托分配方案.  相似文献   

11.
《Robotics and Computer》1997,13(4):297-307
The use of a self-propelled mobile robot working in close proximity to a support vehicle for purposes of power, materials, etc. would be extremely valuable for highway maintenance and construction operations. This paper discusses the development of such a uniqe mobile robot system and emphasizes the robot's control system. The wheeled mobile robot is differentially steered and tethered to a support vehicle via a mechanical linkage which has position tracking capability. This mobile robot system has been termed the tethered mobile robot (TMR), and such an approach has the potential for use in a wide variety of highway maintenance operations. An optimal control system applicable to many highway maintenance operations is designed and implemented through the utilization of recently developed servo control technology. Experimental results presented show significant promise for the TMR system.  相似文献   

12.
This paper describes a quadcopter manipulator system, an aerial robot with an extended workspace, its controller design, and experimental validation. The aerial robot is based on a quadcopter with a three degree of freedom robotic arm connected to the base of the vehicle. The work aims to create a stable airborne robot with a robotic arm that can work above and below the airframe, regardless of where the arm is attached. Integrating a robotic arm into an underactuated, unstable system like a quadcopter can enhance the vehicle's functionality while increasing instability. To execute a mission with accuracy and reliability during a real-time task, the system must overcome the inter-coupling effects and external disturbances. This work presents a novel design for a robust adaptive feedback linearization controller with a model reference adaptive controller and hardware implementation of the quadcopter manipulator system with plant uncertainties. The closed-loop stability of the aerial robot and the tracking error convergence with the robust controller is analyzed using Lyapunov stability analysis. The quadcopter manipulator system is custom developed in the lab with an off-the-shelf quadcopter and a 3D-printed robotic arm. The robotic system architecture is implemented using a Jetson Nano companion computer for autonomous onboard flight. Experiments were conducted on quadcopter manipulator system to evaluate the autonomous aerial robot's stability and trajectory tracking with the proposed controller.  相似文献   

13.
《Advanced Robotics》2013,27(9):905-926
In this paper, we present a new solution to laparoscopic manipulation based on forcefeedback control. This method allows us to both explicitely control the forces applied to the patient through the trocar and to precisely control the position of the surgical instrument. It does not require any geometrical model of the operative environment nor any fine robot base placement prior to the instrument insertion. Different adaptive control strategies involving different kinds of sensory equipments are proposed. These strategies are experimentally validated on a laboratory apparatus. An experiment is also presented where a laparoscope held by the robot's arm tracks a target through visual servoing.  相似文献   

14.
《Advanced Robotics》2013,27(9-10):1249-1270
This paper presents a multi-sensor-based control strategy allowing a mobile robot to safely navigate with respect to a given human being. Two sensors are embedded in our robot: a vision system that is able to detect and track the person of interest, and a RFID antennas belt that can locate the tag worn by the latter. Thus, our control strategy will be built using image features (when the user is visible) and RFID information (when not). In the first case, a robust visual servoing control will be designed, while in the second case a suitable RFID controller will be proposed. Experimental results demonstrate the efficiency of the proposed control strategy.  相似文献   

15.
《Advanced Robotics》2013,27(11):1203-1218
A new visual servoing technique based on two-dimensional (2-D) ultrasound (US) image is proposed in order to control the motion of an US probe held by a medical robot. In opposition to a standard camera which provides a projection of the three-dimensional (3-D) scene to a 2-D image, US information is strictly in the observation plane of the probe and consequently visual servoing techniques have to be adapted. In this paper the coupling between the US probe and a motionless crossed string phantom used for probe calibration is modeled. Then a robotic task is developed which consists of positioning the US image on the intersection point of the crossed string phantom while moving the probe to different orientations. The goal of this task is to optimize the procedure of spatial parameter calibration of 3-D US systems.  相似文献   

16.
Stabilization control is an essential mission for the tethered space robot‐target combination during the postcapture phase of tethered space robot (TSR). In this paper, the stabilization problem of such a tumbling combination is studied. With the consideration of the space tether and the attitude of the TSR's gripper, the dynamic model of the combination is first derived using Lagrange method. Then a robust nonlinear controller for the combination is proposed based on the backstepping control method. Considering the constraint on the velocity of the space tether, command filter method is utilized to guarantee the velocity of the space tether within a permitted range. A feedback term is designed to compensate the saturation of the thruster. Moreover, an adaptive law is designed to estimate the disturbance of parameter uncertainties and this disturbance is compensated in the proposed controller. Numerical simulations suggest that the proposed robust controller can realize the orbit and attitude stabilization of the combination; besides, the velocity of the space tether is effectively constrained and the parameter uncertainties of the combination can be compensated via the adaptive law. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
《Advanced Robotics》2013,27(6-7):893-921
Visual odometry refers to the use of images to estimate the motion of a mobile robot. Real-time systems have already been demonstrated for terrestrial robotic vehicles, while a near real-time system has been successfully used on the Mars Exploration Rovers for planetary exploration. In this paper, we adapt this method to estimate the motion of a hopping rover on an asteroid surface. Due to the limited stereo depth resolution and the continuous rotational motion on a hopping rover, we propose to use a system of multiple monocular cameras. We describe how the scale of the scene observed by different cameras without overlapping views can be transferred between the cameras, allowing us to reconstruct a single continuous trajectory from multiple image sequences. We describe the implementation of our algorithm and its performance under simulation using rendered images.  相似文献   

18.
《Advanced Robotics》2013,27(4):311-326
The purpose of this paper is to construct a methodology for smooth communication between humans and robots. Here, focus is on a mindreading mechanism, which is indispensable in human-human communication. We propose a model of utterance understanding based on this mechanism. Concretely speaking, we apply the model of a mindreading system to a model of human-robot communication. Moreover, we implement a robot interface system that applies our proposed model. The characteristic of our interface system is its ability to construct a relationship between a human and a robot by a method of having an agent, which interacts with the person, migrate from the mobile PC of the person to the robot. Psychological experiments were carried out to explore the validity of the following hypothesis: By reading a robot's mind based on such a relationship, a person can estimate the robot's intention with ease and, moreover, the person can even understand the robot's unclear utterances made by synthesized speech sounds. The results of the experiments statistically supported our hypothesis.  相似文献   

19.

Classical haptic teleoperation systems heavily rely on operators’ intelligence and efforts in aerial robot navigation tasks, thereby posing significantly users’ workloads. In this paper, a novel shared control scheme is presented facilitating a multirotor aerial robot haptic teleoperation system that exhibits autonomous navigation capability. A hidden Markov model filter is proposed to identify the intention state of operator based on human inputs from haptic master device, which is subsequently adopted to derive goal position for a heuristic sampling based local path planner. The human inputs are considered as commanded velocity for a trajectory servo controller to drive the robot along the planned path. In addition, vehicle velocity is perceived by the user via haptic feedback on master device to enhance situation awareness and navigation safety of the user. An experimental study was conducted in a simulated and a physical environment, and the results verify the effectiveness of the novel scheme in safe navigation of aerial robots. A user study was carried out between a classical haptic teleoperation system and the proposed approach in the identical simulated complex environment. The flight data and task load index (TLX) are acquired and analyzed. Compared with the conventional haptic teleoperation scheme, the proposed scheme exhibits superior performance in safe and fast navigation of the multirotor vehicle, and is also of low task and cognitive loads.

  相似文献   

20.
针对某型空中机器人机载电源监测电压存在的温度漂移现象,提出3种温度补偿方案:加入负温度系数热敏电阻、普通光隔线性化、直接采用线性光隔,最终选用高精度线性光隔PS8741;详细给出了PS8741的工作原理及典型应用电路,并对电路进行高低温试验;为便于数据处理,开发了基于MATLAB的图形用户界面(GUI);实验结果表明,利用PS8741测得电压线性度好,抗干扰性强,可有效抑制监测电压随温度漂移,为空中机器人的准确、安全飞行提供有利保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号