首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
A new cocured process called coresin film infusion (co‐RFI) process, which combines RFI process and prepreg/autoclave process, was introduced and four kinds of commercial carbon fiber prepreg material systems and a kind of resin film were applied to fabricate co‐RFI laminates. The compatibility between the resin film and the prepreg matrix and the application of co‐RFI process were investigated based on the resin flowability, glass transition temperature of cured resin, processing quality of laminate, and variation in resin modulus on cocured interphase region measured by nanoindentation. Furthermore, mode I (GIC), mode II (GIIC) delamination fracture toughness, and flexural strength and modulus were measured to evaluate the mechanical properties of cocured laminates with different prepreg materials. The experimental results show that thickness and fiber volume fraction of co‐RFI laminates with the four kinds of prepreg materials are similar to those of prepreg laminates and RFI laminate with acceptable differences. In addition, there are no obvious defects in co‐RFI laminates. Moreover, the reduced modulus of resin at cocured interface and glass transition temperature values of the mixed resin reflect good compatibility between prepreg matrix resin and RFI resin. The GIC, GIIC values, and flexural performances of cocured laminates lie between and even exceed those of prepreg laminates and RFI laminates, indicating no weakening effect in the cocured interface. Therefore, the co‐RFI process is believed to effectively fabricate composite with low cost and it can be applied using various prepreg systems. POLYM. COMPOS., 34:2008–2018, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
以应用于某新能源电动汽车的复合材料层合板为研究对象,利用万能试验机和静态应变测试分析系统等提出了可靠的复合材料层合板准静态拉伸和压缩力学性能试验测定方法,从而为复合材料结构在汽车轻量化中的设计和应用提供了试验依据。该层合板结构采用±45°交叉铺层方法,由2层碳纤维、1层芳纶纤维和2层玻璃纤维层叠构成。试验结果表明,该复合材料层合板在准静态拉伸时呈现沿±45°方向和层间分离挤压的断裂失效模式,这与其内部纤维铺层方向是一致的。同时,由于在复合材料板材中加入了增韧和板材失效时起连接作用的芳纶纤维和玻璃纤维铺层,该复合材料层合板的整体力学性能较常见碳纤维增强复合材料板材,其弹性模量和强度性能均有所降低。  相似文献   

3.
The effect of glass-resin interface strength on the impact energy of glass fabric (style 181) reinforced epoxy and polyester laminates has been determined. The interface strength was altered by surface treatment of the fabrics with silane coupling agents and with a silicone fluid mold release and the interlaminar shear strength was determined as a means to evaluate the interface strength. An instrumented Charpy impact test was used on unnotehed specimens and thus both initiation and propagation energies could be determined as well as dynamic strength. It was found that the initiation energy for both polyester and epoxy laminates increased with increasing interlaminar shear strength, The propagation energy and thus the total energy for polyester laminates displays a minimum at a critical value of interlaminar shear strength (ILSS). Below this critical value, the total impact energy increases with decreasing shear strength and the dominant energy absorption mode appears to be delamination. Above the critical value, the impact energy increases with increasing values of ILSS and the fracture mode is predominantly one of fiber failure. In all cases, even with mold release applied, the shear strength of epoxy laminates was above this critical value and-thus the total impact energy increases with Increasing values of ILSS. The maximum energy absorbed for the epoxy laminate and the polyester laminate is nearly identical. However, the maximum for the epoxy laminate occurs when the shear strength is maximized while for the polyester laminate the shear strength must be minimized. For the polyester laminate when delamination is predominant, it was found that the glass surface treatment affects the amount of delamination as opposed to the specific value of delamination fracture work.  相似文献   

4.
The aim of this work has been the study of mode I delamination of multiply double cantilever beam specimens of glass fiber/epoxy. The results show an important influence of laminate lay-ups on delamination resistance. The value of GIc at the initiation of delamination varies with laminate curvature coupling Ky/Kx and Kxy/Kx. An empirical model describing this variation has been proposed. In addition, it is seen that the values of GIc at the initiation of delamination and at stable crack growth will be very different. The delamination resistance can be characterized by two constants: GIc corresponds to the initiation of delamination, and GSIp corresponds to the plateau of stable crack propagation. The correlation between experimental measurement and analysis of compliance and energy release rate results reveals significant three-dimensional effects.  相似文献   

5.
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form GIC= A · Δ ab (where GIC is mode I interlaminar fracture toughness and Δ a is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness. GICini, can be defined as the GIC value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.  相似文献   

6.
In fiber-reinforced brittle laminates, crack growth under monotonic tension generally consists of crack tunneling along the weaker ply (usually the 90° ply) followed by plane strain crack growth through the adjacent, more resistant plies (the 0° plies). In this paper, the details of this transition in crack mode are examined. The tunneling crack configuration is generalized to allow the crack to penetrate the 0° ply during tunneling. The effects of crack bridging in the 0° plies on the energetics of tunneling are computed numerically for general cases and combined with analytical results for certain limits. The nature of the transition from tunneling to plane strain cracking is found to depend on the ratio of the toughnesses of the 90° and 0° plies. Implications for laminate design are discussed.  相似文献   

7.
It is generally recognized that fiber-reinforced laminated composites are susceptible to damage resulting from low-velocity impacts. Over recent years, many strategies have been devised to increase the fracture toughness of resin matrix materials with the aim of improving the composite's overall resistance to impact damage. One popular strategy for enhancing the fracture toughness of thermosets involves increasing the molecular weight between crosslinks, which, in turn, enhances the resins ductility. In this paper, we investigate the efficiency of this toughening approach with regard to resisting damage in composite laminates subjected to low-velocity impacts. A mechanistic study shows that at least two distinct processes occur during an impact event. First, the laminate experiences a local failure, which resembles a Hertzian fracture process followed by subsequent delamination between the plies. Hertzian fracture occurs once at a critical threshold level initiates laminate damage through the development of a spatially configured array of matrix microcracks, which resemble that of a Hertzian cone together with radial cracks. Further damage accumulates in the laminate by inter-ply delamination with the size of delaminated area increasing coincident with the impact load. Systematic changes in resin crosslink density show that both damage initiation and accumulation are affected. However, the maximum resistance for damage initiation occurs at a much higher crosslink density than that measured for damage accumulation.  相似文献   

8.
Through thickness reinforced stitched laminates with different stitch densities (0.11 and 0.028?mm?2) were studied in order to analyse effects on laminate behaviour, under in-plane tensile loading based on continuum mechanics. Multi-layered stitched laminates with the stacking sequence [+45/90/?45/02/+45/902/?45/0]s were modelled on a lamina-wise basis to analyse the macroscopic damage and local stress–strain constitutive behaviour. Interfaces between lamina and stitch yarns were assumed to be perfectly glued and were modelled by the contact capability. Discretisation procedures using the principle of virtual work were applied in addition to discretisation of the contact traction. Progressive failure analysis with Puck’s failure criteria was conducted to characterise the failure behaviour of the laminate. This analysis showed that reinforcement density is one of the key factors affecting strength, stiffness and crack propagation in composite laminates. By suppressing the damage initiation, densely stitched laminates showed 15.2% higher in-plane stiffness than moderately stitched laminates. The results obtained by the finite element technique are consistent with the experimental results.  相似文献   

9.
Procedures for measuring the crack initiation and arrest toughnesses in Mode II interlaminar fracture in composite materials were analyzed. Different techniques using flexural specimens were studied. The strain energy release rate, G, which is the energy available for crack propagation was calculated using simple beam theory. The calculation takes into account the transverse shear effect. Stable and unstable fractures are analyzed, and conditions required to measure the arrest toughness of interlaminar fracture are discussed. The methodology was applied to the measurement of fracture energy at the onset and arrest of delamination in glass/epoxy laminate.  相似文献   

10.
The effect of varying cooling rate on the microstructure and resulting mechanical properties of a novel fiber-metal laminate (FML) based on a glass fiber-reinforced nylon composite has been investigated. Polished thin sections removed from plain glass fiber/nylon composites and their corresponding fiber-metal laminates indicated that the prevailing microstructure was strongly dependent on the rate of cooling from the melt. Mode I and Mode II interlaminar fracture tests on the plain glass fiber reinforced nylon laminates indicated that the values of GIc and GIIc averaged approximately 1100 J/m2 and 3700 J/m2 respectively at all cooling rates. The degree of adhesion between the aluminum alloy and composite substrates was investigated using the single cantilever beam geometry. Here, the measured values of Gc were similar in magnitude to the Mode I interlaminar fracture energy of the composite, tending to increase slightly with increasing cooling rate. The tensile and flexural fracture properties of the plain composites and the fiber metal laminates were found to increase by between 10% and 20% as the cooling rate was increased by two orders of magnitude. This effect was attributed to over-aging of the aluminum alloy plies at elevated temperature during cooling. Finally, fiber metal laminates based on glass fiber/nylon composites were shown to exhibit an excellent resistance to low velocity impact loading. Damage, in the form of delamination, fiber fracture, matrix cracking in the composite plies, and plastic deformation and fracture in the aluminum layer, was observed under localized impact loading. Here, the fast-cooled fiber metal laminates offered superior post-impact mechanical properties at low and intermediate impact energies, yet very similar results under high impact energies.  相似文献   

11.
《Ceramics International》2017,43(12):8893-8897
During the high-temperature operation of electron beam physical vapor deposited (EB-PVD) thermal barrier coating (TBC), the penetration of environmental calcium-magnesium-alumina-silicate (CMAS) compositions into the ceramic top-coat would affect the growth of delamination cracks. In this work, the effects of CMAS penetration on the delamination cracks in EB-PVD TBC with curved interface are investigated by finite element analysis. In the numerical model, the curved interface evolves as the cyclic displacement instability of the thermally grown oxide (TGO) layer. The penetration of CMAS into the columnar gaps of EB-PVD TBC mainly increases the in-plane modulus of TC layer. It is demonstrated that, with the increase of in-plane modulus in an intact TC, the level of tensile stress, which mainly occurs in the region above the curved interface and responsible for initiating the delamination cracks, presents a decrease; meanwhile, the level of shear stress, which mainly occurs in the region at the periphery of the curved zone to drive the delamination crack when it propagates into this region, presents a increase. Furthermore, the calculation of the strain energy release rate shows that, for the crack located above the curved interface, the increase of in-plane modulus in TC layer can prevent the accumulation of strain energy release rate, and therefore make it more difficult for delamination initiation. However, once the crack propagates into the flat periphery, CMAS penetration would begin to enhance its growth.  相似文献   

12.
Scratches that result in delamination are common in multilayer polymeric laminates and coatings. In this study, the adhesive failure among a set of model double-layer epoxy coatings was experimentally investigated and numerically analyzed using the finite element method modeling based on the maximum principal stress criterion. The adhesive failure on the model epoxy coatings was generated using an ASTM-standard linearly increasing normal load scratch test. The parametric study reveals that delamination may initiate at locations underneath both scratch shoulder and behind scratch tip during scratching. It is also found that the magnitude and direction of peak tensile maximum principal stress developed at the interface are affected by both the laminate thickness and the material parameters of each layer. The parametric analysis shows that the onset of delamination can be delayed by possessing a softer base layer, a top or base layer with a higher yield stress, a base layer with a lower strain-hardening slope, and a lower surface coefficient of friction. The Mode I delamination at the interface will become dominant in a multilayer system when the base layer has a higher modulus and a lower strain hardening slope. The usefulness of the present study for determining the delamination resistance of multilayer polymeric laminates and coatings is discussed.  相似文献   

13.
Delamination crack propagation has been investigated in a laminated fiber-reinforced ceramic-matrix composite. The crack growth initiation resistance has been shown to be dominated by the critical strain energy release rate for the matrix. However, the resistance increases with crack extension because of bridging effects associated with intact fibers and, in some cases, intact segments of matrix. The delamination cracks also assume a steady-state trajectory within a 0° layer close to the 0°/90° interface.  相似文献   

14.
The mode 1 interlaminar fracture toughness of biaxial (±45°) noncrimp warp‐knitted fabric composites made of glass/PP commingled yarn was investigated. The crack propagation along the warp and weft directions, respectively, was considered for the composites cooled at two different rates during laminate molding. The interlaminar fracture toughness was characterized by determining the critical strain energy release rate (GIC) of initiation and propagation measured from the double cantilever beam tests. In the case of a slow cooling rate (1°C/min), most specimens possess pure interlaminar crack propagation and direction‐independence characteristics. Nevertheless, the high‐cooled (10°C/min) specimens fractured in both directions suffer extensive intraply damage (crack branching, debonding, and bridging of 45°‐oriented interfacial yarns) and knit thread breakage, leading to GIC of propagation two times higher than that of the slow‐cooled specimens, and the clear difference in the GIC values of initiation between the two directions may be due to the contribution of the knit thread breakage to the fracture energy. POLYM. COMPOS., 2008 © 2007 Society of Plastics Engineers  相似文献   

15.
An investigation into the effect of isothermal aging on the development of transverse cracks in cross-ply laminates of two high temperature composite systems was performed. The composite materials investigated were BASF X5260/640–800 and DuPont Avimid K/IM6. Changes in the glass transition temperature, composite weight loss, crack density, and mode I intralaminar fracture toughness were monitored during isothermal aging in air at 177°C for up to 2232 h. The two laminate configurations used in this study include two variations of the generic cross-ply configuration [02/90n]s, in which n equals 1 and 2. The results of this investigation show that a layer of degraded material forms at the surface of the X5260/640–800 bismaleimide laminates and that the thickness of the degraded layer increases with aging time. After 744 h of aging, transverse cracks form in the surface plies and an increasing crack density evolves as aging time is increased; however, transverse cracks do not form in the inner 90° ply groups with aging during the time period investigated. The Avimid K/IM6 thermoplastic polyimide laminates, which show evidence of cracking prior to aging, do not exhibit any significant change in crack density with aging. The results of the aging experiments also show that the bismaleimide system exhibits a weight loss of 1.5% and an increase in glass transition temperature from 250°C to 300°C after 2232 h of aging at 177°C, while the thermoplastic polyimide system shows a weight loss of only 0.05% and an increase in glass transition temperature from 280 to 285°C after 2232 h. Changes in the resistance to crack formation are also seen in these materials during aging. The mode I intralaminar fracture toughness, a measure of resistance to transverse crack formation, shows a 50% decrease after aging for 2232 h for the bismaleimide system, while the behavior exhibited by the thermoplastic polyimide shows little evidence of a reduction.  相似文献   

16.
17.
Initiation and propagation of inter-laminar delamination in adhesive bonded spar wingskin joint (SWJ) made with laminated fibre-reinforced plastic (FRP) composite curved panels have been studied employing three-dimensional finite element analyses. In-plane and out-of-plane normal and shear stress distributions are seen to be highly three-dimensional in nature. Tsai-Wu coupled stress failure criteria have been employed to identify critical locations of onset of delamination-induced damage. This occurs underneath the toe-end of the spar overlap and at the inter-laminar surface between the first and second plies of the curved FRP wingskin panel. Significant edge effects on the joint strength have been observed due to the curvature geometry of the composite wingskin panels. Non-linear finite element analyses have been carried out for study of delamination propagation using contact and multi point constraint (MPC) elements. The use of contact elements prevents inter-penetration of delaminated surfaces. Whereas, sequential release of MPC elements facilitates computation of opening, sliding and cross-sliding modes of delamination-induced strain energy release rates (SERR) by using virtual crack closure technique. Variation in delamination lengths significantly effects the variation of peel and inter-laminar shear stresses and different modes of SERRs. Variations on the two delamination fronts are seen to be quite different indicating dis-similar propagation rates. The Mode I SERR (GI) predominantly governs the delamination propagation in the SWJ.  相似文献   

18.
《Ceramics International》2022,48(14):19767-19775
The suitability of asymmetric wedge splitting test (WST) for mode I/II mixed-loading was validated by FE simulation with a three-dimensional heterogeneous continuum FE model. The unsymmetrical strain and stress patterns were observed for mixed-mode loading. Compared with mode I loading of symmetric WST, the introduction of in-plane shear accelerates the crack extension and deviation from symmetry plane with a smaller fracture process zone. Additionally, the asymmetric WST with small, medium and large wedge angles were simulated for sensitivity analysis. With the increasing of asymmetric wedge angle, the recorded vertical load-displacement curves turn from “mild” to “steep”, and the ratio of mode I to mode II fracture energy GI/GII decreases accordingly while the symmetric one has the highest GI proportion. The asymmetric WST with large wedge angle deforms the most at same applied vertical loading displacement, while all WSTs show similar damaged elements amount at the same crack mouth opening displacement.  相似文献   

19.
This article presents the low‐velocity impact response of fiber metal laminates, based on aluminum with a polymer composite, reinforced with carbon and glass fibers. The influence of fiber orientations as well as analysis of load‐time history, damage area and damage depth in relation to different energy levels is presented and discussed. The obtained results made it possible to determine characteristic points, which may be responsible for particular stages of the laminate structure degradation process: local microcracks and delaminations, leading to a decrease in the stiffness of the laminate, as well as further damage represented by laminate cracks and its perforation. The damage mechanism of fiber metal laminates is rather complex. In case of carbon fiber laminates, a higher tendency to perforation was observed in comparison to laminates containing glass fibers. Delaminations in composite interlayers and at the metal/composite interface constitute a significant damage form of fiber metal laminates resulting from dynamic loads. Fiber metal laminates with glass fibers absorb energy mainly through plastic deformation as well as through delamination initiation and propagation, whereas laminates containing carbon fibers absorb energy for penetration and perforation of the laminate. POLYM. COMPOS. 37:1056–1063, 2016. © 2014 Society of Plastics Engineers  相似文献   

20.
A new family of particulate modifiers was incorporated into an epoxy‐based model film adhesive system and the performance was evaluated. The particulate modifiers were selected to include a range of particle sizes, chemistry, and functionality. Thermal analysis, lap shear, and fracture energy tests were performed to characterize the performance of the adhesives. The mechanisms of failure for the adhesives were analyzed in relation to the particle modifier characteristics. Significant differences were found for mode I fracture energy when comparing adhesively joined composite specimens in cocured and bonded situations. Large preformed particle modified adhesives had nearly the same GIC values for both cocured and bonded applications, while the GIC values for the much smaller core‐shell particle modified adhesives differed significantly. All particle modified adhesives provided an improvement in mode II fracture toughness over that of the control such that the laminates failed either in compression (through‐thickness direction) or through delamination of the prepreg plies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号