首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of adhesive thickness on tensile and shear strength of a polyimide adhesive has been investigated. Tensile and shear tests were carried out using butt and single lap joints. Commercially available polyimide (Skybond 703) was used as adhesive and aluminum alloy (5052-H34) was used as adherends. The tensile strength of the butt joints decreased with increasing adhesive thickness. In contrast, adhesive thickness did not seem to affect the shear strength of single lap joints. The fabricated joints using the polyimide adhesive failed in an interfacial manner regardless of adhesive thickness. The linear elastic stress analysis using a finite element method (FEM) indicates that the normal stress concentrated at the interface between the adherend and the adhesive. The FEM analysis considering the interfacial stress well explains the effect of adhesive thickness on the joint strength.  相似文献   

2.
Employing a functionally graded adhesive the efficiency of adhesively bonded lap joints can be improved significantly. However, up to now, analysis approaches for planar functionally graded adhesive joints are still not addressed well. With this work, an efficient model for the stress analysis of functionally graded adhesive single lap joints which considers peel as well as shear stresses in the adhesive is proposed. Two differential equations of the displacements are derived for the case of an axially loaded adhesive single lap joint. The differential equations are solved using a power series approach. The model incorporates the nonlinear geometric characteristics of a single lap joint under tensile loading and allows for the analysis of various adhesive Young׳s modulus variations. The obtained stress distributions are compared to results of detailed Finite Element analyses and show a good agreement for several single lap joint configurations. In addition, different adhesive Young׳s modulus distributions and their impact on the peel and shear stresses as well as the influence of the adhesive thickness are studied and discussed in detail.  相似文献   

3.
As most existing studies focus on developing models and theories describing the static strength of adhesive joints as a function of the fatigue loading, there is a lack of understanding on how the fatigue of the adhesive joint affects dynamic modal properties of the bonded structure. In applications such as automobile components, modal properties are critical in determining their dynamic performances. To investigate the relationship between modal properties of single lap joints (SLJs) and the cyclic-vibration-peel loading, this study first carries out vibration fatigue tests and subsequent modal response measurements using steel–aluminum SLJ specimens. It is experimentally demonstrated that modal frequencies of the SLJ structure tend to decrease with increasing vibration fatigue cycles. Furthermore, it is also shown that this trend is related to the fatigue characteristics of the adhesive layer. The fatigue degradation effects of Young's modulus and contact area between the adhesive and the adherends on modal frequencies are then investigated using a finite element model. Simulation results reveal that dramatic reductions in modulus and contact area values are required to result in the modal frequency shifting observed in experiments, which may not be always realistic. Although the findings in this study are informative, more research effort is needed to further identify the critical reason(s) for the experimental trend of decreasing modal frequencies with increasing vibration fatigue cycles.  相似文献   

4.
The static tensile load bearing capability of adhesively-bonded tubular single lap joints calculated using linear mechanical adhesive properties is usually far less than the experimentally-determined one because the majority of the load transfer of adhesively-bonded joints is accomplished by the nonlinear behavior of the rubber-toughened epoxy adhesive

In this paper, both the nonlinear mechanical properties and the residual thermal stresses in the adhesive resulting from joint fabrication were included in the stress calculation of adhesively-bonded joints. The nonlinear tensile properties of the adhesive were approximated by an exponential equation which was represented by the initial tensile modulus and ultimate tensile strength of the adhesive.

From the tensile tests and the stress analyses of adhesively-bonded joints, a failure model for adhesively-bonded tubular single lap joints under axial loads was proposed.  相似文献   

5.
The increased use of adhesives for joining structural parts demands a thorough understanding of their load carrying capacity. The strength of the adhesive joints depends on several factors such as the joint geometry, adhesive type, adherend properties and also on the loading conditions. Particularly polymer based adhesives exhibit sensitivity to loading rate and therefore it is important to understand their behavior under impact like situations. The effect of similar versus dissimilar adherends on the dynamic strength of adhesive lap joints is addressed in this study. The dynamic strength is evaluated using the split-cylinder lap joint geometry in a split Hopkinson pressure bar setup. The commercial adhesive Araldite 2014 is used for preparing the joints. The adherend materials considered included steel and aluminum. The results of the study indicated that the dynamic strength of the lap joint is influenced by the adherend material and also by the adherent combination. Even in the case of joints with similar adherends, the strength was affected by the adherend type. The strength of steel–steel joints was higher than that for aluminum–aluminum joints. In the case of dissimilar adherends, the strength was lower than that of the case of similar adherends. The results of this study indicate that the combination of adherend material should also be accounted for while designing lap joints.  相似文献   

6.
The stress wave propagations in butt adhesive joints of similar hollow cylinders subjected to static and impact tensile loadings are analyzed in elastic and elasto-plastic deformation ranges using the finite-element method (FEM). The impact loading is applied to the joint by dropping a weight. The upper end of the upper adherend is fixed and the lower adherend of which the lower end is connected to a guide bar is subjected to the impact loading. The FEM code employed is DYNA3D. The effects of the adhesive thickness and Young's modulus of the adhesive on the stress wave propagation at the interfaces are examined. In addition, the characteristics of the joints subjected to impact loadings are compared with those of the joints under static loadings and the joint strengths are estimated by using the interface stress distributions. It is found that the maximum value of the maximum principal stress, σ1 occurs at the outside edge of the interface of the lower adherend to which the impact loading is applied. The maximum value of the maximum principal stress, σ1 increases as Young's modulus of the adhesive increases when the joints are subjected to impact loadings. It is found that the characteristics of the joints subjected to impact loadings are opposite to those subjected to static loadings. In addition, experiments were carried out to measure the strain response of the butt adhesive joints subjected to impact and static tensile loadings using strain gauges and the joint strengths were also measured. Fairy good agreements are observed between the numerical and the measured results.  相似文献   

7.
The tensile load bearing capability of adhesively-bonded tubular single lap joints which is calculated under the assumption of linear mechanical adhesive properties is usually much less than the experimentally-determined because the majority of the load transfer of adhesively-bonded joints is accomplished by the nonlinear behavior of rubber-toughened epoxy adhesives. Also, as the adhesive thickness increases, the calculated tensile load bearing capability with the linear mechanical adhesive properties increases, while, on the contrary, the experimentally-determined tensile load bearing capability decreases.

In this paper, the stress analysis of adhesively-bonded tubular single lap steel-steel joints under tensile load was performed taking into account the nonlinear mechanical properties and fabrication residual thermal stresses of the adhesive. The nonlinear tensile properties of the adhesive were approximated by an exponential equation which was represented by the initial tensile modulus and ultimate tensile strength of the adhesive.

Using the results of stress analysis, the failure criterion for the adhesively-bonded tubular single lap steel-steel joints under tensile load was developed, which can be used to predict the load-bearing capability of the joint. From the failure criterion, it was found that the fracture of the adhesively-bonded joint was much influenced by the fabrication residual thermal stresses.  相似文献   

8.
The strength of adhesive bonded joints is investigated both analytically and experimentally. The deformed states of lap joints under tensile shear loading are analysed by the finite element method on the assumption of elastic deformation. A method of using the adhesive strength law is proposed to estimate the joint strength. The adhesive strength law is experimentally determined by subjecting butt joints of two thin-walled tubes to combined axial load and torsion. The strength of lap joints is determined by adopting the adhesive strength law to the adhering interface as well as the strength law of adherend and adhesive resin. The calculated strain distribution and strength of the joints are compared with the experimental results. The effects of the joint configurations on the deformation and strength are discussed. It is shown that the proposed method is useful to predict the joint strength.  相似文献   

9.
The strength of adhesive bonded joints is investigated both analytically and experimentally. The deformed states of lap joints under tensile shear loading are analysed by the finite element method on the assumption of elastic deformation. A method of using the adhesive strength law is proposed to estimate the joint strength. The adhesive strength law is experimentally determined by subjecting butt joints of two thin-walled tubes to combined axial load and torsion. The strength of lap joints is determined by adopting the adhesive strength law to the adhering interface as well as the strength law of adherend and adhesive resin. The calculated strain distribution and strength of the joints are compared with the experimental results. The effects of the joint configurations on the deformation and strength are discussed. It is shown that the proposed method is useful to predict the joint strength.  相似文献   

10.
The main target of this paper is to investigate the effect of peak stress at the extremities of the adhesive layer of a bonded assembly subjected to dynamic shear impact. It is known, that under both static and dynamic loadings such joints endure at their extremities high level of stresses, an aspect known as edge effects. Double lap joint assembly was considered with unidirectional carbon–epoxy substrates and Araldite 2031 adhesive. To quantify this edge effect, a specific coefficient, named coefficient of stress concentration was defined: it is the ratio of the maximum shear stress to the average shear stress. This coefficient helps to calculate maximum strength of the joint since experimentally, only average shear stress could be measured. A numerical analysis at the midplane of the joint was carried out to investigate the effect of geometrical and material parameters on this stress concentration factor. It was found that this factor is constant with the time once the equilibrium is established. Moreover, this stress concentration coefficient decreases with higher Young's modulus of the adherents, lower Young's modulus of the adhesive, thicker and shorter adhesive layer. A unified parameter involving geometrical and mechanical parameters of the specimen was established to quantify this stress concentration factor.  相似文献   

11.
An experimental–computational fracture-mechanics approach for the analysis and design of structural adhesive joints under static loading is demonstrated by predicting the ultimate fracture load of cracked lap shear and single lap shear aluminum and steel joints bonded using a highly toughened epoxy adhesive. The predictions are then compared with measured values. The effects of spew fillet, adhesive thickness, and surface roughness on the quasi-static strength of the joints are also discussed. This fracture-mechanics approach is extended to characterize the fatigue threshold and crack growth behavior of a toughened epoxy adhesive system for design purposes. The effects of the mode ratio of loading, adhesive thickness, substrate modulus, spew fillet, and surface roughness on the fatigue threshold and crack growth rates are considered. A finite element model is developed to both explain the experimental results and to predict how a change in an adhesive system affects the fatigue performance of the bonded joint.  相似文献   

12.
Adhesive lap joint between glass fibre/epoxy composites and aluminium alloy (2014 T4) was prepared by an in situ moulding process using a matched die mould. The surface of aluminium alloy was treated with chromic acid before adhesive bonding. Lap shear strength and fatigue life were evaluated in tensile mode and tension–compression mode (at 40% of lap shear load of adhesive joint), respectively. Knurling on the surface of aluminium alloy improved the lap shear strength of the adhesive joint but did not influence the fatigue life of the same. Lap shear strength and fatigue life of adhesive joint made with neat epoxy adhesive and reinforcement of an intermediate layer of Kevlar® between glass/epoxy composite and aluminium alloy were observed to be 0.44?kg/mm2 and 3.6?×?105 cycles, respectively. In another case, lap shear strength and fatigue life of similar type of adhesive joint made from nanoclay (Cloisite 30B)-reinforced epoxy adhesive and without reinforcement of an intermediate layer of Kevlar® were observed to be 0.38?kg/mm2 and 2.3?×?105 cycles, respectively. Whereas, lap shear strength and fatigue life of adhesive joint made from nanoclay-reinforced epoxy adhesive along with the reinforcement of an intermediate layer of Kevlar® were 0.48?kg/mm2 and 3.9?×?105 cycles, respectively. Therefore, adhesive joint made from nanoclay-reinforced epoxy adhesive along with the reinforcement of an intermediate layer of Kevlar® was the best.  相似文献   

13.
Two methacrylate adhesives, commonly used in railway applications, were tested before, during and after accelerated humid ageing. First, bulk tensile samples were fabricated in order to perform mechanical characterization before ageing. Then, the samples were placed in a humid environment and the influence of water on the Young's modulus and the tensile strength was determined. In parallel, Electrochemical Impedance Spectroscopy (EIS) measurements were carried out with methacrylate-adhesive-coated aluminum panels in order to extract parameters related to the porosity and adhesion of adhesives which are both dependent on water penetration. Finally, the mechanical characterization of adhesively-bonded lap joints with aluminum substrates was performed before and after accelerated humid ageing. All these experiments allowed to distinguish the two adhesives tested. It was found that the bulk adhesive samples which presented the best mechanical properties before ageing did not guarantee a good bonded-joint behavior after ageing. More importantly, the combination of EIS with mechanical tests allows to significantly reduce very much the number of experiments and, thus, the cost of industrial validation tests.  相似文献   

14.
The increasing use of innovative materials in manufacturing of modern mechanical components has led to the development of reliable joints between innovative (composite materials etc.) and traditional materials (steel, aluminum etc.). In the last few years, hybrid joints, combining the advantages of the adhesive joints and traditional mechanical joints as bolted or riveted joints, have been shown an increasing industrial interest especially in automotive and aerospace sectors. In the present paper a systematic experimental study of hybrid lap joints was carried out with the aim to detect the optimal joint configuration. Tensile tests on hybrid joints made by combining adhesive bonding and self-piercing riveting (SPR) were carried out. Also tensile tests of simple adhesive joints and simple SPR joints were carried out. The joints were made of AA 2024-T6 aluminum sheet and carbon fiber reinforced polymer (CFRP) laminate. Effective guidelines for an insight in the joint design are provided.  相似文献   

15.
The durability of adhesive joints is of special concern in structural applications and moisture has been identified as one of the major factors affecting joint durability. This is especially important in applications where joints are exposed to varying environmental conditions throughout their life. This paper presents a methodology to predict the stresses in adhesive joints under cyclic moisture conditioning. The single lap joints were manufactured from aluminium alloy 2024 T3 and the FM73®-BR127® adhesive-primer system. Experimental determination of the mechanical properties of the adhesive was carried out to measure the effect of moisture uptake on the strength of the adhesive. The experimental results revealed that the tensile strength of the adhesive decreased with increasing moisture content. The failure strength of the single lap joints also progressively degraded with time when conditioned at 50°C, immersed in water; however, most of the joint strength recovered after drying the joints. A novel finite element based methodology, which incorporated moisture history effects, was adopted to determine the stresses in the single lap joints after curing, conditioning, and tensile testing. A significant amount of thermal residual stress was present in the adhesive layer after curing the joints; however, hygroscopic expansion after the absorption of moisture provided some relief from the curing stresses. The finite element model used moisture history dependent mechanical properties to predict the stresses after application of tensile load on the joints. The maximum stresses were observed in the fillet areas in both the conditioned and the dried joints. Study of the stresses revealed that degradation in the strength of the adhesive was the major contributor in the strength loss of the adhesive joints and adhesive strength recovery also resulted in recovered joint strength. The presented methodology is generic in nature and may be used for various joint configurations as well as for other polymers and polymer matrix composites.  相似文献   

16.
The strength and lifetime of adhesively bonded joints can be significantly improved by reducing the stress concentration at the ends of overlap and distributing the stresses uniformly over the entire bondline. The ideal way of achieving this is by employing a modulus graded bondline adhesive. This study presents a theoretical framework for the stress analysis of adhesively bonded tubular lap joint based on a variational principle which minimizes the complementary energy of the bonded system. The joint consists of similar or dissimilar adherends and a functionally modulus graded bondline (FMGB) adhesive. The varying modulus of the adhesive along the bondlength is expressed by suitable functions which are smooth and continuous. The axisymmetric elastic analysis reveals that the peel and shear stress peaks in the FMGB are much smaller and the stress distribution is more uniform along its length than those of mono-modulus bondline (MMB) adhesive joints under the same axial tensile load. A parametric evaluation has been conducted by varying the material and geometric properties of the joint in order to study their effect on stress distribution in the bondline. Furthermore, the results suggest that the peel and shear strengths can be optimized by spatially controlling the modulus of the adhesive.  相似文献   

17.
This paper deals with the stress wave propagation and stress distribution in single-lap adhesive joints subjected to impact tensile loads with small strain rate. The stress wave propagations and stress distributions in single-lap joints have been analyzed using an elastic three-dimensional finite-element method (DYNA3D). An impact load was applied to the single-lap adhesive joint by dropping a weight. One end of one of the adherends in the single-lap adhesive joint was fixed and the other adherend to which a bar was connected was impacted by the weight. The effects of Young's modulus of the adherends, the overlap length, the adhesive thickness and the adherend thickness on the stress wave propagations and stress distributions at the interfaces have been examined. It was found that the maximum stress occurred near the edge of the interface and that it increased with an increase of Young's modulus of the adherends. It was also seen that the maximum stress increased as the overlap length, the adhesive thickness and the adherend thickness decreased. In addition, strain response of single-lap adhesive joints subjected to impact tensile loads was measured using strain gauges. Fairly good agreements were observed between the numerical and experimental results.  相似文献   

18.
In this study, strength of epoxy adhesively bonded scarf joints of dissimilar adherends, namely SUS304 stainless steel and YH75 aluminum alloy is examined on several scarf angles and various bond thicknesses under uniaxial tensile loading. Scarf angle, θ=45°, 60° and 75° are employed. The bond thickness, t between the dissimilar adherends is controlled to be ranged between 0.1 and 1.2 mm. Finite element (FE) analysis is also executed to investigate the stress distributions in the adhesive layer of scarf joints by ANSYS 11 code. As a result, the apparent Young's modulus of adhesive layer in scarf joints is found to be 1.5-5 times higher than those of bulk epoxy adhesive, which has been obtained from tensile tests. For scarf joint strength prediction, the existing failure criteria (i.e. maximum principal stress and Mises equivalent stress) cannot satisfactorily estimate the present experimental results. Though the measured stress multiaxiality of scarf joints proportionally increases as the scarf angle increases, the experimental results do not agree with the theoretical values. From analytical solutions, stress singularity exists most pronouncedly at the steel/adhesive interface corner of joint having 45-75° scarf angle. The failure surface observations confirm that the failure has always initiated at this apex. This is also in agreement with stress-y distribution obtained within FE analysis. Finally, the strength of scarf joints bonded with brittle adhesive can be best predicted by interface corner toughness, Hc parameter.  相似文献   

19.
The stress-wave propagations and stress distributions in single-lap joints of dissimilar adherends were analyzed using an elastic three-dimensional finite-element method (DYNA3D). An impact tensile load was applied to the single-lap adhesive joint by dropping a weight. One end of the upper adherend in the single-lap adhesive joint was fixed and the other adherend (lower adherend) which was connected to a bar was impacted by the weight. The effects of Young's modulus and the thickness of each adherend on the stress wave propagations and stress distributions at the interfaces were examined. It was found that the maximum value of the maximum principal stress occurred near the edge of the interface of the fixed adherend. The maximum principal stress increased as Young's modulus of the fixed adherend increased. It was also observed that the maximum principal stress increased as the fixed adherend thickness decreased. In addition, strain responses in the single-lap adhesive joints of dissimilar adherends subjected to impact tensile loads were measured using strain gauges. Fairly good agreements were found between the FEM calculations and the experimental measurements.  相似文献   

20.
The mechanical and adhesive properties of epoxy formulations based on diglycidyl ether of bisphenol A cured with various aliphatic amines were evaluated in the glass state. Impact and uniaxial compression tests were used to determine the impact energy, elastic modulus and yield stress, respectively. The adhesion tests were carried out in steel–steel joints using single‐lap shear, T‐peel, and impact adhesive joints geometry. The better mechanical and adhesive behavior of the networks is obtained when exists high flexibility of chain between crosslink and/or high elastic modulus. The 1‐(2‐aminoethyl)piperazine epoxy network presents the best adhesive properties, high flexibility, and the largest impact energy. However, it possesses low elastic modulus and yield stress. Also, exhibits increases in peel strength and impact energy while reductions in lap shear strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号