首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A new approach to experimental data treatment in the pull-out and microbond tests has been developed. It uses the relationship between the maximum force recorded in these tests and the embedded length ('scale factor') to separately determine adhesional interfacial parameters (critical energy release rate, local bond strength) and interfacial friction in debonded regions. The new method does not require the measurement of the debond force, which corresponds to interfacial crack initiation, and is, therefore, much more convenient and simpler than 'direct' techniques involving continuous monitoring of crack growth. Using the equation for the current crack length as a function of the load applied to the fiber, based on a fracture mechanics analysis of interfacial debonding, we modeled the pull-out and microbond experiments and obtained the maximum force versus the embedded length. By varying the critical energy release rate and interfacial frictional stress to fit experimental plots, both interfacial parameters were determined for several fiber-polymer pairs. Effects of specimen geometry, residual thermal stresses, and interfacial friction on the measured values are discussed. The results are compared with those obtained with our similar stress-based approach. The energy criterion works when the embedded length is not very short, and in this range of embedded length it is better than the stress criterion. Both criteria can be complementarily used for interface characterization.  相似文献   

2.
The techniques aimed at adhesion strength measurement between reinforcing fibers and polymer matrices (the pull-out and microbond tests) involve the measurement of the force, F max, required to pull out a fiber whose end is embedded in the matrix. Then, this maximum force value is used to calculate such interfacial parameters as the apparent bond strength, τapp, and the local interfacial shear strength (IFSS), τd. However, it has been demonstrated that the F max value is influenced by interfacial friction in already debonded regions, and, therefore, these parameters are not purely 'adhesional' but depend, in an intricate way, on interfacial adhesion and friction. In the last few years, several techniques for separate determination of adhesion and friction in micromechanical tests have been developed, but their experimental realization is rather complicated, because they require an accurate value of the external load at the moment of crack initiation. We have developed a new technique which uses the relationship between the maximum force and the embedded length ('scale factor') to separately measure fiber-matrix interfacial adhesion and friction. Using the equation for the current crack length as a function of the applied load, based on a stress criterion of interfacial debonding, we modeled the pull-out and microbond experiments and obtained the maximum force value versus the embedded length. By varying τd and interfacial friction, τf, to fit experimental plots, both interfacial parameters were estimated. The micromechanical tests were modeled for three types of specimen geometries (cylindrical specimens, spherical droplets, and matrix hemispheres in the pull-out test) with different levels of residual thermal stresses and interfacial friction. The effect of all these factors on the experimental results is discussed, and the importance of specimen geometry is demonstrated. One of the most interesting results is that the 'ultimate' IFSS (the limiting τapp as the embedded length tends to zero) is not always equal to the 'local' bond strength.  相似文献   

3.
We have derived the equations which explicitly express the peak force, F max, and the apparent interfacial shear strength, τ app, measured in the pull-out and microbond tests, as functions of the embedded length. Three types of test geometries were considered: (1) a fiber embedded in a cylindrical block of the matrix material; (2) microbond test with spherical matrix droplets; and (3) pull-out test in which the matrix droplet had the shape of a hemisphere. Our equations include the local interfacial shear strength (IFSS), τ d, and the frictional interfacial stress, τ f, as parameters; the effect of specimen geometry appeared in the form of dependency of the effective fiber volume fraction on the embedded length. The values of τ d and τ f were determined by fitting our theoretical curves to experimental F max (l e) plots by using the least squares method. Our analysis showed how the local IFSS and the frictional interfacial stress affected the measured F max and τ app values. In particular, it was revealed that intervals of embedded lengths could exist in which frictional interfacial stress had no effect on F max and τ app, even if the τ f value was high. We also derived an equation relating the scatter in the interfacial strength parameters (τ d and τ f) to the scatter in τ app, which is experimentally measurable, and proposed a procedure to determine the standard deviations of τ d and τ f from experimental pull-out and/or microbond test data.  相似文献   

4.
A new micromechanical technique for experimental determination of fiber-matrix interfacial properties is presented. This technique consists in tensile loading of the fiber, with a matrix droplet on it, at both ends, accompanied by continuous direct observation of interfacial crack propagation. In comparison with the well-known microbond test, the new method has two important advantages. First, crack propagation is stable for any embedded fiber length and any relation between adhesion and friction at the interface. Second, compliance of the test equipment does not affect the results, and specimens with long free fiber ends can be successfully tested. A similar result can be reached using the pull-out or microbond test with an 'infinite' (very long) embedded fiber length. An algorithm for separate determination of the interfacial adhesion and friction from experimental relationships between the crack length and applied load is described. The new test was employed to determine the interfacial parameters for composites of glass fibers with polypropylene, polystyrene, and polycarbonate. For each fiber-polymer system investigated, the following parameters were calculated: ultimate interfacial shear strength; critical energy release rate for crack propagation; and adhesional pressure. Our approach to the estimation of the work of adhesion, WA, from micromechanical tests, based on the concept of adhesional pressure, allowed us to calculate the WA values for several thermoplastic matrix-glass fiber pairs and to obtain values consistent with previous estimations made according to other approaches.  相似文献   

5.
Analyses of the elastic stress transfer taking place across the fiber-matrix interface are presented for single- and multi-fiber composite pull-out tests. The multi-fiber composite is treated as a three-cylinder assemblage consisting of a central fiber, a matrix annulus, and a composite medium. The forms of the fiber axial stress and the interface shear stress distributions along the embedded fiber length are determined for single- and multi-fiber composite pull-out tests and their dependences on the fiber volume fraction, the dimensions of the specimen, the fiber-to-matrix modulus ratio, and the embedded fiber aspect ratio are displayed. The stress transfer for a perfectly bonded interface for the two pull-out tests is compared and the difference is clearly shown. In addition, for the single-fiber composite pull-out test, the present theory is compared with some existing theories.  相似文献   

6.
This paper introduces a newly developed specimen type, which is used to measure the critical energy release rate of tough, structural adhesives loaded in shear. This End-Loaded Shear Joint (ELSJ) specimen is loaded until a shear crack propagates through the adhesive layer. When the crack propagation is stopped, by unloading the specimen, the critical energy release rate in mode II, G IIc, can be obtained by correlating the energy dissipated during the test and the measured crack area on the fracture surface of the specimen. The paper presents the dimensions of the ELSJ specimen, the corresponding test setup and the evaluation method used to obtain G IIc. An overview of the advantages and the limitations of the new specimen type shows the need for its development and improvement when compared to some state of the art experiments. The first results of ELSJ tests are shown and discussed, using the crash-optimized structural adhesive — Henkel Terokal 5077. The experimental results presented, focus on thin adhesive layers and quasi-static test velocities.  相似文献   

7.
The critical strain energy release rate (G c), the residual stresses (σ), Young's modulus (E), and the practical adhesion, characterized by ultimate parameters (Fmax or dmax), of organic layers made of DGEBA epoxy monomer and IPDA diamine hardener were determined. The prepolymer (DGEBA-IPDA) was deposited both as thick coatings and as a mechanical stiffener onto degreased aluminum alloy (5754) or chemically etched titanium alloy (Ti-6Al-4V). During the three-point flexure test used as a practical adhesion test [this test is also called the double cantilever adhesion test (DCAT)], the failure may be regarded as a special case of crack growth. To understand the real gradient properties of the interphase, substrate, and bulk polymer properties, a three-layer model was developed for quantitative determination of the critical strain energy release rate (Gc). The particular characteristic of this model was to consider the residual stresses developed within the entire three-layered system, leading to an intrinsic parameter representing the practical adhesion between a polymer and a metallic substrate. Moreover, to determine the residual stresses generated in such three-layer systems, the gradient of interphase mechanical properties was considered. The maxima of residual stress intensities are found at the interphase/substrate interface, leading to an adhesional (interfacial) failure that is experimentally observed. The determination of the critical strain energy release rate by the three-point flexure test (DCAT) shows that residual stresses cannot be neglected. A comparison between the results obtained from the three-point flexure test (DCAT) and those obtained by the tapered double cantilever beam (TDCB) test is presented.  相似文献   

8.
A crucial problem in concrete engineering is the corrosion of steel reinforcements. Polymer fibers as alternative reinforcement material can prevent corrosion; however, high adhesion to concrete and good fiber mechanics are necessary for polymers to be considered as an alternative reinforcement. This study tested different thermoplastic polymer materials to evaluate their level of adhesion to concrete. The adhesion properties of different self-drawn polymer fibers were analyzed by extracting the fibers from concrete using single fiber pull-out test (SFPT). To determine the adhesion mechanism, different polymer properties were analyzed and correlated to SFPT. Strong evidence was found that the fibers mechanical properties correlate with SFPT. Roughening the fiber surface increases the SFPT results significantly. While highly polar materials can support the adhesion process, a clear correlation could not be found. This study identifies high stiffness and roughness as the crucial properties of polymer fibers used in concrete engineering. If these factors can be engineered into the fiber, polymer fibers can present an alternative to steel in concrete reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号