首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesive joints consist of adherends and an adhesive layer having different thermal and mechanical properties. When they are exposed to uniform thermal loads the mechanical-thermal mismatches of the adherends and adhesive layer result in uniform but different thermal strain distributions in the adhesive and adherends. The thermal stresses arise near and along the adherend-adhesive interfaces. The present thermal stress analyses of adhesively bonded joints assume a uniform temperature distribution or a constant temperature imposed along the outer boundaries of adhesive lap joints. This paper outlines the thermal analysis and geometrically non-linear stress analysis of adhesive joints subjected to different plate edge conditions and varying thermal boundary conditions causing large displacements and rotations. In addition, the geometrically non-linear thermal stress analysis of an adhesively bonded T-joint with single support plus angled reinforcement was carried out using the incremental finite element method, which was subjected to variable thermal boundary conditions, i.e. air streams with different temperatures and velocities parallel and perpendicular to its outer surfaces. The steady state heat transfer analysis showed that the temperature distribution through the joint members was non-uniform and high heat fluxes occurred inside the adhesive fillets at the adhesive free ends. Based on the geometrically non-linear stress analysis of the T-joint bonded to both rigid and flexible bases for different plate edge conditions, stress concentrations were observed at the free ends of adhesive-adherend interfaces and inside the adhesive fillets around the adhesive free ends, and the horizontal and vertical plates also experienced considerable stress distributions along outer surfaces. In addition, the effect of support length on the peak thermal adhesive stresses was found to be dependent on the plate edge conditions, when a support length allowing moderate adhesive stresses was present.  相似文献   

2.
In cases where adhesively bonded joints may experience large displacements and rotations whilst the strains remain small, although all joint members behave elastically the small strain-small displacement (SSSD) theory cannot correctly predict the stresses and deformations in the adhesive joint members. Previous studies have shown that the small strain-large displacement theory considering the non-linear effects of the large displacements in the stresses and deformations has to be used in the analysis of adhesively bonded joints. In this study, the geometrical non-linear analysis of an adhesively bonded double containment corner joint was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The objective of the study was to determine the effects of the large displacements on the adhesive and adherend stresses of the corner joint. Therefore, the corner joint was analysed for two different loading conditions; a compressive applied load, Px, at the free end of the horizontal plate and one normal to the plane of the horizontal plate, Py. The plates, support and adhesive layer were assumed to have elastic properties. In practice, the adhesive accumulations, called spew fillets, arising around the adhesive free ends were taken into account in the analysis since their presence results in a considerable decrease in the peak stresses around the free ends of the adhesive. The SSLD and SSSD analyses showed that the stress concentrations occurred around the free end of the adhesive, thus at the adherend (slot) corners inside the right vertical and the lower horizontal adhesive fillets, and inside the left vertical and the upper horizontal adhesive fillets for the loading conditions Px and Py, respectively. In addition, the plate regions around the adherend (slot) free ends along the outer fibres of the vertical and horizontal plates undergo very high stress concentrations. The SSLD analysis predicted a non-linear effect in the displacement and stress variations at the critical adhesive and plate locations, whereas the SSSD analysis showed their variations were lower and proportional to the applied incremental load. This non-linear effect became more evident for the loading condition Px, whereas both analyses predicted very close displacement and stress variations in the adhesive fillets and in the horizontal plate for the loading condition Py. As a result, the geometrical non-linear behaviour of the corner joint is strictly dependent on the loading condition and the large displacements affect the stress and deformation states in the joint members, and result in higher stresses than those predicted by the SSSD theory.  相似文献   

3.
When adhesively bonded joints are subjected to large displacements, the small strain-small displacement (linear elasticity) theory may not predict the adhesive or adherend stresses and deformations accurately. In this study, a geometricaly non-linear analysis of three adhesively bonded corner joints was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The first one, a corner joint with a single support, consisted of a vertical plate and a horizontal plate whose left end was bent at right angles and bonded to the vertical plate. The second corner joint, with a double support, had two plates whose ends were bent at right angles and bonded to each other. The final corner joint, with a single support plus angled reinforcement, was a modification of the first corner joint. The analysis method assumes that the joint members, such as the support, plates, and adhesive layers, have linear elastic properties. Since the adhesive accumulations (spew fillets) around the adhesive free ends have a considerable effect on the peak adhesive stresses, they were taken into account. The joints were analyzed for two different loading conditions: one loading normal to the horizontal plate plane Py and the other horizontal loading at the horizontal plate free edge Px. In addition, three corner joints were analyzed using the finite clement method based on the small strain-small displacement (SSSD) theory. In predicting the effect of the large displacements on the stress and deformation states of the joint members, the capabilities of both analyses were compared. Both analyses showed that the adhesive free ends and the outer fibres of the horizontal and vertical plates were subjected to stress concentrations. The peak stresses appeared at the slot corners inside the adhesive fillets and at the horizontal and vertical plate outer fibres corresponding to the locations where the horizontal and vertical adhesive fillets finished. The SSLD analysis predicted that the displacement components and the peak adhesive and plate stress components would show a non-linear variation for the loading condition Px, whereas the SSSD analysis showed smaller stress variations proportional to the applied load. However, both the SSLD and the SSSD analyses predicted similar displacement and stress variations for the loading condition Py. Therefore, the stress and deformation states of the joint members are dependent on the loading conditions, and in the case of large displacements, the SSSD analysis can be misleading in predicting the stresses and deformations. The SSLD analysis also showed that the vertical and horizontal support lengths and the angled reinforcement length played an important role in reducing the peak adhesive and plate stresses.  相似文献   

4.
In this study, the geometrically non-linear analysis of an adhesively modified double containment corner joint was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The plates, support, and adhesive layers were assumed to have linear elastic properties. The joint was analysed for two different loading conditions: one normal loading to the horizontal plate plane P y and one horizontal loading at the horizontal plate free edge P x . In addition, the small strain-small displacement (SSSD) analysis of this adhesive joint was also carried out in order to compare the capability of the two theories in predicting the effect of large displacements on the stress and deformation states of the joint members. Both analyses showed that stress and strain concentrations occurred around the adhesive free ends, corresponding to the vertical and horizontal slot free ends, and along the outer fibres of the horizontal and vertical plates. The peak stresses appeared at the slot corners inside the adhesive fillets and at the horizontal and vertical plate outer fibres corresponding to the two slot free ends. The variations of the Von Mises stresses at these critical adhesive and plate locations were evaluated versus increasing loads. The SSLD theory predicted an evident non-linear effect, as a result of the large displacements, on the stress variations for the loading P x , whereas this non-linear effect disappeared on the stresses for the loading P y ; thus, the stresses presented very close variations to those obtained by the SSSD theory. However, the SSSD theory predicted a lower stress variation proportional to the increasing load for both loading conditions. In the case of the loading P y , the right vertical adhesive fillet and both plates appeared as the most critical joint regions, whereas the lower horizontal fillet and both plates were determined as the most critical regions for the loading P x . The behaviour of all joint members towards the applied load is strictly dependent on the boundary and loading conditions. Finally, the SSSD theory may be misleading in the prediction of the stress and deformations, but the SSLD theory includes the non-linear effect of the large displacements and rotations and gives more realistic results, although it requires more computational effort. In addition, it was observed that the geometrical parameters, such as the support length, vertical support length, and vertical slot depth, had a considerable effect on the peak adhesive and plate stresses, depending on the loading condition.  相似文献   

5.
Under an increasing load, the adhesively bonded joints may undergo large rotations and displacements while strains are still small and even all joint members are elastic. In this case, the linear elasticity theory cannot predict correctly the nature of stress and deformation in the adhesive joints. In this study, an attempt was made to develop an analysis method considering the large displacements and rotations in the adhesive joints, assuming all joint members to be still elastic. An incremental finite element method was used in the application of the small strain-large displacement theory to the adhesively bonded joints. An adhesively bonded double containment cantilever (DCC) joint was analysed using this incremental finite element method under two different loadings: a tensile loading at the horizontal plate free end, Px. and one normal to the horizontal plate plane, Py. The adhesive and plates were assumed to have elastic properties, and some amount of adhesive, called spew fillet, that accumulated at the adhesive free ends was also taken into account. The analysis showed that the geometrical non-linear behaviour of adhesively bonded joints was strictly dependent on the loading and boundary conditions. Thus, a DCC joint exhibits a high non-linearity in the displacements, stresses, and strains in the critical sections of the adhesive and horizontal plate under a tensile loading at the free end of the horizontal plate, Px, while a similar behaviour in these regions was not observed for a loading normal to the horizontal plate plane, Py. However, an increasing non-linear variation in the stresses and deformations of the horizontal plate appeared from the free ends of the adhesive-horizontal plate interfaces to the free end of the horizontal plate for both loading conditions. Consequently, joint regions with a low stiffness always undergo high rotations and displacements, and if these regions include any adhesive layer, the non-linear effects will play an important role in predicting correctly the stresses and deformations in the joint members, especially at the adhesive free ends at which high stress concentrations occurred. In addition, the DCC joint exhibited a higher stiffness and lower stress and strain levels in the joint region in which the support and horizontal plate are bonded than those in the horizontal plate.  相似文献   

6.
In this study, stress and stiffness analyses of adhesively bonded tee joints with a single support plus angled reinforcement were carried out using the finite element method. It was assumed that the adhesive had linear elastic properties. In actual bonded joints, some amount of adhesive, called the spew fillet, accumulated at the free ends of the adhesive layer; therefore, the presence of the adhesive fillet at the adhesive free ends was taken into account. The tee joints were analysed for two boundary conditions: a rigid base and a flexible base. In addition, each boundary condition was analysed for four loading conditions: tensile, compressive, and two side loadings. The stress analysis showed that both side loading conditions resulted in higher stress levels in the joint region in which the vertical plate and supports are bonded to each other, as well as in the adhesive layer in this region for both rigid and flexible base boundary conditions. In adhesively bonded joints, the joint failure is expected to initiate in the adhesive regions subjected to high stress concentrations; therefore, the peak adhesive stresses were evaluated in these critical regions. In the case of the rigid base, the peak adhesive stresses occurred at the corner of the vertical plate, which was bent at right angles, for the tensile and compressive loading conditions, and in the adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for both the left and the right side loading conditions. However, in case of the flexible base, the peak adhesive stresses occurred in the adhesive fillet at the right free end of the horizontal adhesive layer-horizontal support interface for the tensile, compressive, and the right side loading conditions, and in the vertical adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for the left side loading condition. Furthermore, the adhesive stresses showed a nonlinear variation in the direction of the adhesive thickness for all boundary and loading conditions. The left side loading condition, among the present loading conditions, which results in the highest adhesive stresses is the most critical loading condition for both boundary conditions. The effects of horizontal and vertical support lengths on the peak adhesive stresses and on the joint stiffness were also investigated and the appropriate support dimensions relative to the plate thickness were determined based on the stress and stiffness analyses.  相似文献   

7.
In this study, the geometrical non-linear analysis of an adhesively bonded modified double containment comer joint, which is presented as an alternative to previous comer joints, was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The analysis method assumes the joint members such as the support, plates, and adhesive layers to have linear elastic properties. Since the adhesive accumulations (spew fillets) around the adhesive free ends have an important effect on the peak adhesive stresses, their presence was taken into account by idealizing them as triangular in shape. The joint was analysed for two different loading conditions: one load normal to the horizontal plate plane, Py, and one load horizontal at the horizontal plate free edge, Px. Finally, small strain-small displacement (SSSD) analysis of the joint was carried out and the results of both analyses were compared in order to determine the capability of the two theories in predicting the effects of large displacements on the stress and deformation states in the joint members. Both analyses showed that the peak stress values appeared at the slot comers inside the adhesive fillets and at the upper and lower longitudinal fibres (top and bottom longitudinal surfaces) of the horizontal and vertical plates corresponding to the horizontal and vertical slot free ends. In the case of the load Py, the right vertical adhesive fillet and both plates were the most critical joint regions, whereas the lower horizontal fillet and both plates were determined to be the most critical regions for the load Px. The SSLD theory predicted a non-linear effect on the variations of the displacement and stress components at these critical adhesive and plate locations for the load Px, whereas the stress components at the critical adhesive locations presented variations very close to those determined by the SSSD theory for the load Py, but this non-linear effect appeared on the displacement and stress variations at the critical locations of both plates. In addition, the SSSD theory predicted that the displacement and stress components would have lower variations proportional to the increasing load for both loading conditions. The stress and deformation states of all joint members are strictly dependent on the boundary and loading conditions. In addition, whereas the SSSD theory may be misleading for some loading conditions, the SSLD theory gives more realistic results, since it takes into account the non-linear effect of large displacements and rotations.  相似文献   

8.
A recently popular method for retrofitting reinforced concrete (RC) beams is to bond fibre reinforced polymer (FRP) plates to their tensile faces. An important failure mode of such plated beams is the debonding of the FRP plates from the concrete due to high level of stress concentration in the adhesive at the ends of the FRP plate. This paper presents an improved solution for interfacial stresses in a concrete beam bonded with the FRP plate by including the effect of the adherend shear deformations. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the concrete beam and the bonded plate. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.  相似文献   

9.
This paper presents a study of stress states in two-dimensional models of metal-to-metal adhesively bonded joints subjected to 4-point flexural loading using the finite element (FE) method. The FE simulations were carried out on adhesive bonded joints of high support span to specimen thickness ratio undergoing extensive plastic deformations. Two different adhesive types with eight different adhesive layer thicknesses each varying between 50 μm and μm were considered. The lower interfaces in the brittle adhesive were observed to be under a lower stress state because of the constraint exerted by a relatively stiff lower adherend. The ductile adhesive layers were under a lower state of stress as a result of the lower elastic modulus. It is concluded that the degree of plastic deformation in the adhesive is dictated by the adherend stiffness and the load transfer along the interface. The effect of load and support pins is noticeable at all adhesive thicknesses. High stress localisation exists in the vicinity of the load pins. The constraint exerted by the adherends dictates the deformation gradient through thickness of the adhesive layer. Adhesive joint behaviour as determined by the adhesive properties is investigated and also experimentally validated. Conclusions were drawn by correlating the adhesive and adherend stress states.  相似文献   

10.
In this study we have carried out the thermal residual stress analyses of adhesively bonded functionally graded clamped plates for different edge heat fluxes. The material properties of the functionally graded plates were assumed to vary with a power law along an in-plane direction not through the plate thickness direction. The transient heat conduction and Navier equations describing the two-dimensional thermo-elastic problem were discretized using the finite-difference method, and the set of linear equations was solved using the pseudo singular value method. The plate material properties near the interfaces played an important role in the interfacial adhesive stresses. The compositional gradient affected considerably both in-plane temperature distributions and heat transfer periods. The type of in-plane heat flux had only a minor effect on the temperature profiles but affected both the temperature levels and heat transfer period. Both plates undergo considerable compressive normal strains and stresses, but shear strains were more effective. Peak equivalent strains were observed for a constant heat flux and plates with a metal-rich composition. The compositional gradient and direction played important role in the profiles and levels of normal, shear and equivalent stresses as well as strains. The equivalent stress and strains concentrated along the free edges of the adhesive layer. The adhesive layer experienced a considerable distortional deformation rather than volumetric deformation. The equivalent stress exhibited small changes through the adhesive thickness and along the overlap length. The equivalent stress remained uniform in a large region of the overlap length and increased to a peak level around the free edges of the first plate–adhesive interface, whereas it increased to a peak level in a large region of the overlap length from a minimum level around the free edges of the second plate–adhesive interface. The strains and equivalent strains were higher for a metal-rich material composition. The direction of the material composition of the plates affected both stress and strain levels; thus, the CM–CM and CM–MC plates exhibited lower strain and stress levels than those in the MC–CM and MC–MC plates. However, only the adhesively bonded CM–MC plate configuration could achieve the lowest deformations and stresses in both plates and adhesive layer.  相似文献   

11.
This paper presents analytical nonlinear solutions for composite single-lap adhesive joints. The ply layups of each composite adherend can be arbitrary, but in the overlap region the ply layups of the upper and lower adherends are assumed to be symmetrical about the adhesive layer. In the present formulation, equilibrium equations of the overlap are derived on the basis of geometrical nonlinear analysis. The governing equations are presented in terms of adherend displacements by taking into account large deflections of the overlap adherends and adhesive shear and peel stresses simultaneously. Closed-form nonlinear solutions for adherend displacements, an edge moment factor and adhesive stresses are formulated and then simplified for practical applications. To verify the present analytical solutions for nonlinear analysis of composite single-lap joints, the geometrically nonlinear 2D finite element analysis is conducted using commercial package MSC/NASTRAN. The numerical results of the edge moment factor, deflections and adhesive stresses predicted by the present solutions correlate well with those of the geometrically nonlinear finite element analysis. This indicates that the present analytical solutions capture key features of geometrical nonlinearity of composite single-lap adhesive joints.  相似文献   

12.
This study comprises the stress and stiffness analyses of a second type of modified double containment corner joint which is presented as an alternative to two previous designs in order to reduce the effect of bending moment on the adhesive stresses. Plates are bonded at a right angle into slots of a corner support and the vertical slot depth is kept as large as possible in order to produce a joint which is stiffer and sustainable to high loads, provided that high stress concentration regions are under compression, and to obtain savings of the corner joint volume. The analyses were carried out using the finite element method and assuming that the adhesive, plates, and corner support had linear-elastic properties. Since the geometry of the adhesive free end has an important effect on the high adhesive stresses, the adhesive spew fillet arising from the applied pressure to provide the physical contact between the adhesive and plates was taken into account. In order to show the effect of boundary and loading conditions on the stresses and the overall joint stiffness, the joint was analysed for three loading conditions: two linear and a bending moment. It was found that the loading in the normal direction to the horizontal plate plane at its free end was the most critical and that maximum stress concentrations occurred around the adhesive free ends. A detailed study of adhesive stresses showed that the peak adhesive stresses occurred at the lower free end of the left vertical adhesive layer-slot interface for this loading condition and bending moment, respectively, and at the lower free end of the right vertical adhesive layer-slot interface for the loading condition in another direction. In addition, the effects of geometrical dimensions of the corner support, such as the horizontal and vertical support lengths, slot depth, and support thickness, on the peak adhesive stresses and on the overall joint stiffness were investigated and it was found that whereas the support lengths had a considerable effect, the effect of the slot depth and support thickness was negligible. The dimensions of the corner support were determined relative to the plate thickness based on the results.  相似文献   

13.
In this work, elasto-plastic stress analysis of single lap joints with and without protrusion in adhesive bondline subjected to tension and bending was carried out using 2D non-linear finite element analysis and confirmed experimentally. AA 2024-T3 aluminum adherends were bonded with SBT 9244 film adhesive. The protrusion was obtained by extending the adhesive film by 2?mm from the overlap length at both overlap ends. Three different adherend thicknesses and overlap lengths for each loading and bondline type were used. The joints with and without protrusion, for comparison, were loaded with the same load for each adherend thickness and overlap length. Finally, it was observed that the protrusion reduces the strength in the joint under tension, while the protrusion increases the strength in the joint under bending.  相似文献   

14.
One of the major difficulties in designing adhesive lap joints is the stress singularity present at the adherend corners at the ends of the overlap. One way to overcome this problem is to assume that the corners have a certain degree of rounding. The objective of the present study was to better understand the effect of the change in the geometry of the adherend corners on the stress distribution and, therefore, on the joint strength. Various degrees of rounding were studied and two different types of adhesives were used, one very brittle and another which could sustain a large plastic deformation. The study gives a detailed stress and strain distribution around the rounded adherends using the finite element method. The major finding is that the stresses or strains in the adhesive layer of a joint with rounded adherend corners are finite. In real joints, adherends generally have small rounded corners. Consequently, the model with small radius corners may be used to represent real adherends.  相似文献   

15.
Thermal stresses are determined in a single lap joint with identical adherends, which are due solely to temperature changes. The simple bending model used here includes bending and extension of the adherends and extensional and shear strains in the adhesive. The analytical solution shows 'sinusoidal' deformation consistent with warpage (bending) of the adherends due to thermal mismatch. While a modified shear lag model (MSLM) with no adherend bending leads to peak bondline shear stresses which occur only at the ends of the overlap, the bending model shows that such stresses occur not only near the ends, but also at interior points of the overlap region. Results for aluminum adherends and an epoxy adhesive show how the peel, warpage and interfacial shear stresses are distributed over the overlap region.  相似文献   

16.
Environmental, political, and socioeconomic actions over the past several years have resulted in a decreased wood supply at a time when there is an increased demand for forest products. This combination of increased demand and decreased supply has forced more emphasis on engineered wood products, a varied category usually connected with adhesively-bonded end joints, of which the most common type is the finger joint. This paper presents the results of a finite-element analysis of structural finger joints, and focuses primarily on the effect of adhesive stiffness and thickness on stress distribution patterns in finger joints. Results indicate that a flexible adhesive layer concentrates adherend longitudinal and radial stresses at the finger base, whereas a stiff adhesive layer minimizes adherend stresses but increases adhesive stress levels. Results also show that a thin adhesive layer concentrates longitudinal adherend stresses at the juncture of the finger tip and flexible finger base and concentrates radial stresses at all finger bases. However, these increased longitudinal and radial stresses are balanced by reduced adhesive shear stresses.  相似文献   

17.
In this study, the stresses in adhesive-bonded tee joints, in which a right-angled plate is bonded to a rigid plate with an adhesive, have been analysed with a finite element method. It was assumed that the adhesive and adherends had linear elastic properties. The tee joint was analysed under three loading conditions, two linear and one bending moment. The stress distributions in the joint area are given by stress contours and XY plots under the three load conditions. It was found from the results that high stress concentrations occur in the inside corner of the angle plate for loading in the x-direction (Px) and under bending moment (M), this suggesting that failure would not occur in the bonded joint. However, for loading in the y-direction (Py), the maximum normal stresses are concentrated at the left free end of the adhesive layer in the joint, and the first failure may be expected at this edge. Since the geometry of the joints affects the analysis and design of such joints, the influences on the stress distributions of the overlap length, adhesive thickness and adherend thickness were investigated. Practical experiments were carried out and it was found that experimental results were in good agreement with those of the finite element analysis.  相似文献   

18.
In this study, the stress and stiffness analyses of corner joints with a single corner support, consisting of two plates, one of which plain and the other bent at right angles, have been carried out using the finite element method. It was assume that the plates and adhesive had linear elastic properties. Corner joints without a fillet at the free ends of the adhesive layer were considered. The joint support was analysed under three loading conditions, two linear and one bending moment. In the stress analysis, it was found that for loading in the y-direction and by bending moment, the maximum stresses occurred around the lower end of the vertical adhesive layer/ vertical plate interface; for loading in the x-direction, the maximum stresses occurred around the right free end of the horizontal adhesive layer/vertical plate interface. The effects of upper support length, support taper length and adhesive thickness on the maximum stresses have been investigated. Since the peel stresses are critical for this type of joint, a second corner joint with double corner support (i.e., one in which the horizontal plate is reinforced by a support that is an extension of the vertical plate) was investigated which showed considerable decreases in the stresses, particularly peel stresses. A third type of corner joint with single corner support plus an angled reinforcement member was investigated as an alternative to the previous two configurations. It was found that increasing the length and particularly the thickness of the angled reinforcement reduced the high peel stresses around the lower free end of the adhesive/vertical plate interface, but resulted in higher compressive stresses. In the stiffness analysis, the effects of the geometry of the joints, relative stiffness of adhesive/adherends and adhesive thickness were investigated under three loading conditions. For three types of corner joint, results were compared and recommended designs were determined based on the overall static stiffness of the joints and on the stress analysis.  相似文献   

19.
The mechanical performance of a structural bonded joint is mainly dependent on the interlaminar stresses and strains, the high concentration of which is close to the free edges of the adhesive. Under cyclic loading these stresses and strains are expected to be intensified and to accumulate. The present study deals with the distribution of the residual stresses and strains along the interlaminar adhesive layer under cyclic loading and how it is affected by geometrical edge conditions. A numerical non-linear finite element method was applied, the adhesive layer being regarded as an elasto-plastic bi-linear material with kinematic hardening (Bauschinger effect) which accounts for cyclic plasticity. Findings indicate that lateral normal residual strains in the edge of the adhesive layer are the major component which increases significantly with cycling and are probably responsible for failure initiation and propagation. It was also found that a significant reduction of stress concentration at the adhesive edge may be achieved by a modification of the free-edge geometry of both the adhesive and the adherend phases.  相似文献   

20.
A Method for the Stress Analysis of Lap Joints   总被引:4,自引:0,他引:4  
A theory is presented for the adhesive stresses in single and double lap joints under tensile loading, while subjected to thermal stress. The formulation includes the effects of bending, shearing, stretching and hygrothermal deformation in both the adherend and adhesive. All boundary conditions, including shear stress free surfaces, are satisfied. The method is general and therefore applicable to a range of material properties and joint configurations including metal-to-metal, metal-to-CFRP or CFRP-to-CFRP. The solution is numerical and is based on an equilibrium finite element approach. Through the use of an iterative procedure, the solution has been extended to cater for non-linear adhesive materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号