首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel matrix resin system, poly(keto-sulfide)–epoxy resin, has been developed. The poly(keto-sulfide)s (PKS), based on various ketones, formaldehyde, and sodium hydrogen sulfide (NaSH), were prepared by the reported process. These (PKS) having terminal thiol (–SH) groups were used for curing commercial epoxy resin (i.e., diglycidyl ether of bisphenol A – DGEBA), to fabricate crosslinked epoxy-poly(keto-sulfide) resin glass fiber-reinforced composites (GRC). Various epoxy/hardener (PKS) mixing ratios were used, and the curing of epoxy-PKS has been monitored using differential scanning calorimetry (DSC) in dynamic mode. Based on DSC parameters the GRC of epoxy-PKS were prepared and characterized by thermal and mechanical methods. The variation in resin/hardener ratio led to variations in thermal and mechanical properties.  相似文献   

2.
Combustion, Explosion, and Shock Waves - This paper describes the effect of preliminary mechanical activation (MA) and Ti content on maximum temperature, maximum burning rate, composite...  相似文献   

3.
This study was conducted to synthesize poly(L-lactide)–poly(ethylene glycol)–poly(L-lactide) triblock copolymer (PEGLA) with different poly(L-lactide) block length, and explore its applicability in a blend with linear poly(L-lactide) (3051D NatureWorks) with the intention of improving heat seal and adhesion properties at extrusion coating on paperboard. Poly(L-lactide)–poly(ethylene glycol)–poly(L-lactide) was obtained by ring opening polymerization of L-lactide using poly(ethylene glycol) (molecular weight 6000 g mol?1) as an initiator and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy. The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology and differential scanning calorimeter. All blends containing 10 wt% of PEGLAs displayed similar zero shear viscosities to neat poly(L-lactide), while blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity. However, all blends displayed higher shear thinning and increased melt elasticity (based on tan δ). No major changes in thermal properties were distinguished from differential scanning calorimetric studies. High molecular weight PEGLAs could be used in extrusion coating with 3051D without problems.  相似文献   

4.
The mixture of different proportions of sunflower with chia oil provides a simple method to prepare edible oils with a wide range of desired fatty acid compositions. Sunflower–chia (90:10 and 80:20 wt/wt) oil blends with the addition of rosemary (ROS), ascorbyl palmitate (AP) and their blends (AP:ROS) were formulated to evaluate the oxidative stability during storage at two temperature levels normally used, cool (4 ± 1 °C) and room temperature (20 ± 2 °C) for a period of 360 days. Peroxide values (PV) of the oil blends with antioxidants stored at 4 ± 1 °C showed levels ≤10.0 mequiv O2/kg oil; the lowest levels of PV were found for blends with AP:ROS. Values higher than 10.0 mequiv O2/kg were observed between 120–240 days for oil blends stored at 20 ± 2 °C. Similar trends were observed with p-anisidine and Totox values. The oxidative stability determined by the Rancimat method and differential scanning calorimetry showed a greater susceptibility of the oils to oxidative deterioration with increasing unsaturated fatty acids content. The addition of antioxidants increased the induction time and decreased the Arrhenius rate constant, indicating an improvement in the oxidative stability for all the oil blends. Temperature had a strong influence on the stability of these blends during storage.  相似文献   

5.
Abstract

The performances of two contrasting core–shell impact modifiers, in blends with polycarbonate (PC), poly (methyl methacrylate) (PMMA), and poly (styrene-co-acrylonitrile) (PSAN), have been evaluated using tensile impact tests at temperatures between -80 and +50°C. In both modifiers, each individual particle has a 10 nm thick outer shell of PMMA, which is grafted to the rubber phase. In the case of modifier PB, the core of the particle is a 200 nm diameter homogeneous sphere of polybutadiene, with a T g of -86°C. Modifier PBA has a 260 nm core of PMMA, surrounded by a 20 nm inner shell of poly (butyl acrylate-co-styrene), which has a T g of -17°C. Tensile impact tests show that the T g of the rubber does not necessarily control the brittle–ductile transition temperature T BD. Both the PC–PB and PC–PBA blends exhibit some ductility at -80°C, although neither blend is as tough as plain PC at any temperature. The blend of PB with PMMA shows a modest increase in toughness above -40°C and there is a similar but rather larger increase in the toughness of the PMMA–PBA above -20°C. In PSAN blends, the PBA modifier is the more effective toughening agent ahove 0°C. It is concluded that these differences originate from differences in the balance between shear yielding and crazing in the matrix polymer, and in the ability of cavitated rubber particles to prevent crazes from turning into cracks. In PMMA and PSAN blends, the PBA modifier is the more effective toughening agent at 23°C because of its rigid core, which enables stable rubber fibrils both to form and to contribute to local strain hardening, thereby stabilising the yield zone.  相似文献   

6.
This work focuses on the flow behavior of the blend comprising polyvinyl pyrrolidone and cerium (IV) oxide (CeO2) particles in submicron size, under low shear rates. The polyvinyl pyrrolidone–CeO2 blends have been prepared and characterized by scanning electron microscopy, X-ray diffraction, and viscometry. The generation of core–shell morphology was verified from the scanning electron micrographs. Scanning electron microscopy shows that the blend formed is of porous nature. The particle size of CeO2 increases with the concentration of both CeO2 and polymer due to aggregation. The blend containing as high as 35?wt% of CeO2 was found to exhibit pseudo-plastic response under low shear rate. The reasons for the observed morphology and other properties along with mechanism were explained. The main factor, which governs the properties of the end product, was van der Waals attractive forces that exist among the constituents of the system prepared.  相似文献   

7.
Alumina, metalized with Ti by magnetron sputtering, has been successfully bonded to a Kovar alloy using Ag–5 wt% Pd filler. The effects of Ti content on the interfacial microstructure and mechanical properties were investigated. The results showed that a reaction layer was formed at the alumina/filler interface. Microanalysis indentified the reaction products to be titanium oxide and Pd–Ti compounds. The thickness of the reaction layer and the residual filler layer played determinable roles on the joint strength. The maximum four-point flexural strength of the brazed joints at room temperature reached as high as 177.3 MPa when the thickness of Ti layer was 3 μm.  相似文献   

8.
The aim of this work was to obtain zirconia toughened alumina composites with different microstructures, using a simple process (powder mixing and natural sintering). Adjusting the amount of zirconia directly controls the size and localization of zirconia grains and the size of the alumina grains. Doping the composite with CaO, MgO and SiO2 allows further control of the microstructures. The influence of the thermal treatments is also investigated. The composites exhibit different structures (nano/nano-, micro/nano- and micro-composites) with zirconia and alumina grains as small as 100 and 200 nm, respectively, and with the proportion of intragranular zirconia grains varying between 0% and 90%. Zirconia plays a major role on grain size distributions as compared to CaO and MgO, whose role is almost negligible. The use of SiO2 leads to micro/nano composites with intragranular zirconia particles. The influence of these different additions is related to adjustments of the grain boundaries mobility.  相似文献   

9.
The influence of ethylene–octene copolymer and zinc oxide (ZnO) on structure and tensile stress–strain behavior of polyoxymethylene were investigated before and after ultraviolet weathering. Addition of ZnO considerably improved stress–strain characteristics of the ultraviolet-irradiation impaired composites. Crystallinities of ultraviolet-irradiated composites were affected by numerous competitive processes, including suppression of crystallization in the presence of multiple components in the system, nucleation induced by nanofiller, secondary crystallization and amorphization because of the chain scissions of the macromolecules. Addition of ZnO considerably improved stability of the composites, as testified by corresponding changes in the intensities of hydroxyl and carbonyl absorption peaks.  相似文献   

10.
In this study, impact-modified polypropylene (PP) ternary blends based on PP/natural rubber (NR)/linear low-density polyethylene (LLDPE) with ratios of 72/10/18 and 64/20/16 were produced by a twin-screw extruder with polyoctenamer (TOR) as the compatibilizer. The mechanical properties of the blends were determined on injection-molded specimens in tensile, flexural, and impact testing. The impact strength and elongation at break of the blend increased significantly while the flexural modulus and tensile strength decreased slightly with increasing TOR content. The impact strength improved with the increasing TOR due the increase of interfacial adhesion resulting in finer dispersion of the rubbery minor phase in the PP matrix. The improvement in compatibility with the addition of TOR into PP/NR/LLDPE blends is being supported by both scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA).  相似文献   

11.
Different types of composite coatings were prepared by the blending of colloidal nanosilica (SiO2) and titanium dioxide (TiO2) in epoxy resin to investigate their coating performances. A fixed amount of silica nanoparticles (20 wt %) and different amounts (5, 10, and 15 wt %) of microsized TiO2 particles were used in the coatings. The functional groups of the formulated coatings were confirmed by Fourier transform infrared spectroscopy. These results indicate that the SiO2–TiO2 particles interacted well with epoxy. Scanning electron microscopy images of the composite coatings revealed a good dispersion of TiO2 particles at a lower amount of loading; this improved the adhesiveness, glass-transition temperature, thermal stability, and chemical resistance properties. At higher loadings, the performances decreased. The composite coatings were also characterized by their UV radiation-absorption properties with an ultraviolet–visible spectrophotometer. Interestingly, this property was found to be enhanced at higher loadings. An impressive result was noticed in the nanocomposites in terms of oxygen transmission rate performance compared to that of the neat epoxy. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47901.  相似文献   

12.
《Ceramics International》2020,46(8):12128-12137
In this study, Ni–Co–SiC nanocoatings were fabricated using pulse current electrodeposition (PCE) method. Effects of duty cycle and pulse frequency on surface appearance, microstructure, phase structure, wear behavior, and corrosion resistance of as-deposited Ni–Co–SiC nanocoatings were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, nanoindentation, and both wear and corrosion tests. Results indicate that numerous small-sized grains formed on Ni–Co–SiC nanocoatings at 20% duty cycle to provide smooth, uniform, and fine microstructures. The content of SiC nanoparticles in Ni–Co–SiC nanocoatings decreased from 11.2 wt% to 7.4 wt% as duty cycle increased from 20% to 60%. However, the content of SiC nanoparticles in Ni–Co–SiC nanocoatings increased from 6.3 wt% to 9.7 wt% as pulse frequency increased from 100 Hz to 300 Hz. Ni–Co–SiC nanocoatings prepared at pulse frequency of 300 Hz and duty cycle of 20% exhibited average microhardness of 934.4 Hv and average thickness of 43.2 μm. Weight loss of Ni–Co–SiC nanocoatings at 300 Hz was only 17.2 mg, indicating significant wear resistance. In addition, Ni–Co–SiC nanocoatings produced at duty cycle of 20% and pulse frequency of 300 Hz exhibited the maximum impedance, indicating optimal corrosion resistance.  相似文献   

13.
Effects of different silane coupling agents on clay surface modification were studied. Herein, functionalized superfine kaolin was compounded with starch–chitosan (SCS) to prepare starch–chitosan-functionalized superfine kaolin composite. The characterization results showed that kaolin (K) was successfully modified; the composite formed a dense intercalated structure. The glass-transition temperature (T g) was measured by differential scanning calorimetry and dynamic mechanical analysis. It decreased by 60 °C which attested the crystallinity of SCS. The results of thermogravimetric analysis showed that the fastest weight-loss temperature (Tmax) was elevated by over 50 °C for composites. Mechanical properties of the composites were explored by electronic universal testing machine. Tensile strength and elongation of composites were improved by 4.7 and 10.9 times. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48050.  相似文献   

14.
《Ceramics International》2016,42(6):6755-6760
Crystallographic features, physical properties and ionic release from yttria stabilized zirconia (YSZ) in suspension were studied by means of XRD, TEM, light-scattering particle size, BET, ICP and zeta potential analysis. It was found that Zr, Y, Na, and to a lesser extent Ca, Hf and Pd leach from 8 mol% YSZ powder. The impurities present increase the zeta potential of suspensions made from as-received YSZ. A trace amount of tetragonal phase observed in 8 mol% YSZ persists following washing and calcination–milling. Dislocations and crystallographic defects together with fractured crystals which form during milling of the calcined powder should lead to the formation of more broken bonds; as a result the surface of the particles can support higher surface charge density. Washing and calcination–milling lead to a shift of the isoelectric point of 8 mol% YSZ from pH 8.4 to pH 6.3 and 6.8, respectively. Due to higher chemical stability and previously shown positive impacts on microstructure and performance of fuel cells, use of calcined YSZ can be more advantageous than as received powder.  相似文献   

15.
Blends of two elastomeric ethylene–octene copolymers with similar octene contents having a random (ORC) and a blocky architecture (OBC) are prepared by melt mixing. The thermal and mechanical properties of ORC, OBC and their blends are investigated by DSC, dynamic mechanical analysis and tensile tests. The morphology of the semi-crystalline samples is studied by AFM and WAXS. Two types of crystals have been observed: (i) Orthorhombic crystals forming lamellae with an estimated thickness of about 13 nm composed mainly of long polyethylene-like sequences of OBC that melt a temperature of about 120 °C and (ii) fringed micellar crystals with a thickness of 2–4 nm formed basically by short polyethylene-like sequences of ORC that have melting temperatures between 30 and 80 °C. The amorphous phase contains a relatively homogeneous mixture of segments of both components indicated by the relatively uniform shape of the loss modulus peaks from dymamic-mechanical measurements for all investigated copolymers and blends. ORC crystallization is hindered in blends as indicated by lower melting enthalpies. This might be related to the high octene content of the amorphous phase at the relevant crystallization temperature as well as geometrical constraints since ORC crystallization occurs in an already semi-crystalline polymer. The results of tensile tests show that the mechanical behavior can be tailored via blend composition and morphology of the semi-crystalline material. The findings clearly indicate that blending is a powerful strategy to optimize the properties of polyolefin-based copolymers.  相似文献   

16.
17.
The effect of thiourea and urea on zinc-cobalt alloys obtained from chloride baths under continuous current deposition are described and discussed. The deposit morphology was analyzed using Scanning Electron Microscopy (SEM) and an X-Ray Diffraction (XRD) was used to determine the preferred crystallographic orientations of the deposits. The use of additives does not refine the grain size of the Zn–Co alloy and an especially porous alloy was produced in the presence of urea. The preferred crystallographic orientations of zinc–cobalt alloys do not change in the presence additives. Zinc–cobalt alloys were without texture in the presence and absence of additives. Also, in the absence of additive and in the presence of urea, the XRD lines of the Zn–Co alloys are slightly shifted with respect to the pure zinc XRD lines, whereas, in the presence of thiourea, the XRD lines are not shifted. The alloy composition was examined using Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF). The percentage of cobalt in the alloy decreases slightly from 1.04 to 0.91 wt.% in the presence of urea and in the presence of thiourea it increases from 1.04 to 7.70 wt.%. Voltammetric studies show that thiourea increases the reduction rate of cobalt. This explains the increase in cobalt percentage in the alloy in the presence of thiourea.  相似文献   

18.
A silane–cerium treatment was applied on an aluminum adherend to simultaneously improve the bonding performance and corrosion resistance of the adhesively bonded aluminum joint in cryogenic applications, such as with liquefied natural gas containment tanks. The lap shear strengths and corrosion performances of the adhesively bonded joints composed of treated aluminum adherends were measured with respect to the silane–cerium treatment and the surface pretreatment on the aluminum adherend. The bonding characteristics of the aluminum adherend were investigated by measuring the water contact angle and conducting the potentiodynamic polarization test after the aluminum adherends with different surface treatments of silane–cerium were immersed in a 0.5?M NaCl solution. In addition, the surfaces were analyzed with scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy to characterize the chemical compositions of the silane–cerium-treated aluminum adherend. The experimental results show that an appropriate silane–cerium treatment on the aluminum adherend produces an effective corrosion-resistant layer and that it has a highly reliable bonding characteristic for the adhesive joint at a cryogenic temperature of ?150?°C.  相似文献   

19.
《Ceramics International》2020,46(8):11622-11630
In the last decades, the production of ultra-high temperature composites with improved thermo-mechanical properties has attracted much attention. This study focuses on the effect of graphite nano-flakes addition on the microstructure, densification, and thermal characteristics of TiB2–25 vol% SiC composite. The samples were manufactured through spark plasma sintering process under the sintering conditions of 1800 °C/7 min/40 MPa. Scanning electron microscopy images demonstrated a homogenous dispersion of graphite flakes within the TiB2–SiC composite causing a betterment in the densification process. The thermal diffusivity of the specimens was gained via the laser flash technique. The addition of graphite nano-flakes as a dopant in TiB2–SiC did not change the thermal diffusivity. Consequently, the remarkable thermal conductivity of TiB2–SiC remained intact. It seems that the finer grains and more interfaces obstruct the heat flow in TiB2–SiC–graphite composites. Adding a small amount of graphite nano-flakes enhances the densification of the mentioned composite by preventing the grain growth.  相似文献   

20.
《Ceramics International》2022,48(7):9495-9505
Effects of dopants with different valences on the densification behavior and phase composition of a ZrO2–SiO2 nanocrystalline glass-ceramic (NCGC) during pressureless sintering were investigated in this study. The raw powder of Ca2+, La3+, Ce4+ and Ta5+ ions doped ZrO2–SiO2 (referred to as Ca-ZS, La-ZS, Ce-ZS, Ta-ZS, respectively) and pure ZrO2–SiO2 (PZS) sample were synthesized by sol-gel method, followed by pressureless sintering. Compared with the PZS sample, doping of Ca2+ and La3+ ions significantly promoted the densification of the NCGCs. The “densification promotion” effect was attributed to the formation of oxygen vacancies and the decrease of SiO2 viscosity due to doping of aliovalent cations. The dopants with various valences showed significant effects on the phase compositions of the NCGCs during sintering. Doping of Ca2+ ion accelerated the reaction kinetics between ZrO2 nanocrystallites and amorphous SiO2 to yield ZrSiO4. The La3+ ion acted as destabilizer of t-ZrO2, which resulted in a rapid tetragonal (t) to monoclinic (m) ZrO2 phase transformation during sintering, while in the Ta5+ and Ce4+ ions doped sample, the phase transformation occurred gradually. All the doping ions increased the lattice parameters and the volume of t-ZrO2 unit cell, while the effects of the doping ions on the lattice parameters of m-ZrO2 unit cell were more complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号