首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent nanophase TiO2 thin films on soda lime glass were prepared from titanium tetraisopropoxide (TTIP) by a sol-gel dip-coating method. The TiO2 films had amorphous phase up to 400°C and anatase phase at 500°C. The amorphous TiO2 films obtained at 300–400°C showed considerable photoactivity for the degradation of formic acid. The photoactivity of the TiO2 films was enhanced with increasing calcination temperature from 300° to 500°C. The crystallinity of the anatase films at 500°C was improved with increasing calcination time up to 2 h and reduced with a further increase in calcination time to 4 h due to the significant formation of sodium titanate phase as a result of sodium diffusion. The four-time-dipping anatase films at 500°C exhibited the greatest photoactivity at the calcination time of 2 h. Sodium diffusion into TiO2 films was retarded by a SiO2 underlayer of 50 nm in thickness.  相似文献   

2.
Controllable nanostructures in spin coated titanium oxide (TiO2) films have been achieved by a very simple means, through change of post deposition annealing temperature. Electron beam imaging and reciprocal space analysis revealed as-deposited TiO2 films to be characterized by a dominant anatase phase which converts to the rutile form at 600 °C and reverts to the anatase modification at 1,200 °C. The phase changes are also accompanied by changes in the film microstructure: from regular nanoparticles (as-deposited) to nanowires (600 °C) and finally to dendrite like shapes at 1,200 °C. Photoluminescence studies, Raman spectral results, and X-ray diffraction data also furnish evidence in support of the observed solid state phase transformations in TiO2.  相似文献   

3.
We prepared photocatalytic TiO2 thin films which exhibited relatively high growth rate and low impurity on polymer substrate by plasma enhanced atomic layer deposition (PE-ALD) from Ti(NMe2)4 [tetrakis (dimethylamido) Ti, TDMAT] and O2 plasma to show the self-cleaning effect. The TiO2 thin films with anatase phase and bandgap energy about 3.3 eV were deposited at growth temperature of 250 °C and the photocatalytic effects were compared with commercial Activ glass. From contact angles measurement of water droplet and photo-induced degradation test of organic liquid, TiO2 thin films with anatase phases showed superhydrophilic phenomena and decomposed organic liquid after UV irradiation. The anatase TiO2 thin film on polymer substrate showed highest photocatalytic efficiency after 5 h UV irradiation. We attribute the highest photocatalytic efficiency of TiO2 thin film with anatase structure to the formation of suitable crystalline phase and large surface area.  相似文献   

4.
《Ceramics International》2023,49(4):6094-6099
The purpose of this study was to improve the photocatalytic activity of TiO2. A composite material in which apatite crystals were precipitated on the surface of TiO2 was synthesized by immersing TiO2 powder in pseudo-body solution. The composite material was heated in an attempt to improve the crystallization without inducing the anatase to rutile phase transformation of TiO2 or reducing the specific surface area. In contrast to using TiO2 alone, apatite-coated TiO2 had a higher anatase-to-rutile transition temperature and lower specific surface area. In the methylene blue decolorization test, the decolorization rate of apatite-coated TiO2 gradually increased with an increase in the heating temperature from 100 °C to 500 °C, and rapidly increased from 700 °C to 900 °C. The apatite-coated TiO2 heated at 800 °C had the highest decolorization speed, which was approximately three times faster than that of apatite-coated TiO2 without heating. It is assumed that the crystallinity of the anatase part is enhanced by heating, and the photocatalytic activity is improved.  相似文献   

5.
《Ceramics International》2015,41(6):7461-7465
Titanium dioxide is widely used in a lot of applications. The properties of TiO2 strongly depend on its phase composition. The transformation temperature between phases is influenced by a lot of factors. One of them is a type of substrate under the TiO2 film. In presented work, thin films of TiO2 were deposited by the sol–gel method on silicon, stainless steel (304 L) and Co–Cr–Mo alloy (Vitallium). The process of anatase–rutile phase transformation was investigated by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) studies of deposited coatings. The results were compared with anatase–rutile transformations temperature of TiO2 powders obtained by analogous sol–gel process. The temperature of anatase–rutile phase transformation changed in the range of 700–1000 °C and strongly depends on a kind of substrate. It was found that anatase–rutile transformation of TiO2 coating proceeded at a higher temperature than rutilization of titania powders.  相似文献   

6.
TiO2-based nanofibers were synthesized using a sol–gel method and electrospinning technique. The as-spun composite fibers were heat-treated at different temperatures (500°C, 550°C, 600°C, and 650°C) and atmospheres (ammonia and nitrogen) for 4 h. The fibers had diameters of 50 to 200 nm and mainly featured anatase and rutile phases. The anatase phase decreased and the rutile phase increased with increasing temperature. Different nitrogen conditions exerted minimal effects on the TiO2 crystalline phase. Different nitriding atmospheres during preservation heating yielded various effects on fibers. The effect of nitrogen in ammonia atmosphere is better than that in nitrogen atmosphere. The fibers heat-treated at 600°C and subjected to preservation heating in NH3 showed high photocatalytic activity.  相似文献   

7.
Titanium oxide thin films were prepared on p-Si(l00) substrate by plasma enhanced chemical vapor deposition using high purity titanium isopropoxide and oxygen. The deposition rate was little affected by oxygen flow rate, but significantly affected by RF power, substrate temperature, carrier gas flow rate, and chamber pressure. Morphology of the film became coarser with increasing deposition time and chamber pressure, and the film showed less uniformity at high deposition rates. It was also found that the overall deposition process is controlled by heterogeneous surface reaction below 200°C., but controlled by mass transfer of reactants at higher temperatures. TiO2 films deposited at temperatures lower than 400°C was amorphous, but showed the anatase crystalline structure upon 400°C deposition. The dielectric constant was about 47 for the films post-treated by rapid-thermal annealing (RTA) at 800°C. The leakage current was about 2×10−5 A/cm2 for the films deposited at 400°C and RTA-treated at 600°C. However, it was decreased to less than 3×10−7 A/cm2 for the film RTA-treated at 800°C.  相似文献   

8.
The hydrophilic TiO2 films were successfully deposited on slide glass substrates using titanium tetraisopropoxide as a single precursor without carriers or bubbling gases by a metal-organic chemical vapor deposition method. The TiO2 films were employed by scanning electron microscopy, Fourier transform infrared spectrometry, UV-Visible [UV-Vis] spectroscopy, X-ray diffraction, contact angle measurement, and atomic force microscopy. The temperature of the substrate was 500°C, and the temperatures of the precursor were kept at 75°C (sample A) and 60°C (sample B) during the TiO2 film growth. The TiO2 films were characterized by contact angle measurement and UV-Vis spectroscopy. Sample B has a very low contact angle of almost zero due to a superhydrophilic TiO2 surface, and transmittance is 76.85% at the range of 400 to 700 nm, so this condition is very optimal for hydrophilic TiO2 film deposition. However, when the temperature of the precursor is lower than 50°C or higher than 75°C, TiO2 could not be deposited on the substrate and a cloudy TiO2 film was formed due to the increase of surface roughness, respectively.  相似文献   

9.
Thin films with the composition 70 mol% Na0.5Bi0.5TiO3 + 30 mol% NaTaO3 were prepared by sol–gel synthesis and spin coating. The influence of the annealing temperature on the microstructural development and its further influence on the dielectric properties in the low‐ (kHz–MHz) and microwave‐frequency (15 GHz) ranges were investigated. In the low‐frequency range we observed that with an increasing annealing temperature from 550°C to 650°C the average grain size increased from 90 to 170 nm, which led to an increase in the dielectric permittivity from 130 to 240. The temperature‐stable dielectric properties were measured for thin films annealed at 650°C in the temperature range between ?25°C and 150°C. The thin films deposited on corundum substrates had a lower average grain size than those on Si/SiO2/TiO2/Pt substrates. The highest average grain size of 130 nm was obtained for a thin film annealed at 600°C, which displayed a dielectric permittivity of 130, measured at 15 GHz.  相似文献   

10.
Smooth, uniform and crystalline vanadium oxide thin films were deposited on quartz by spin coating technique with four different rpm i.e., 1000, 2000, 3000 and 4000 and subsequently post annealed at 350, 450 and 550?°C in vacuum. Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were utilized for microstructural characterizations and phase analysis, respectively, for vanadium oxide powder and deposited film. Nanorods were observed to be grown after vacuum annealing. X-ray photoelectron spectroscopy (XPS) technique was utilized to study the elemental oxidation state of deposited vanadium oxide films. Thermo-optical and electrical properties such as solar transmittance (τs), reflectance (ρs), absorptance (αs), infrared (IR) emittance (εir) and sheet resistance (Rs) of different thin films were evaluated. Based on the optical characteristics the optimized condition of the film processing was identified to be spin coated at 3000?rpm. Subsequently, the nanoindentation technique was utilized to measure hardness and Young's modulus of the optimized film. The measured nanomechanical properties were found to be superior to those reported for sputtered vanadium oxide films. Finally, temperature dependent phase transition characteristics of optimized vanadium oxide films were studied by differential scanning calorimetry (DSC) technique. Reversible and repeatable phase transition was found to occur in the range of 44–48?°C which was significantly lower than the phase transition temperature (i.e., 68?°C) of bulk VO2.  相似文献   

11.
Haber–Bosch process as the current dominant artificial NH3 production process in industry, requires relatively high temperature (350–550 °C) and pressure (150–350 atm). Electrocatalytic nitrogen reduction reaction (NRR) as a green and sustainable strategy for ammonia production has raised intensive research interest in recent years but still remains a significant challenge because of the lack of high performance electrocatalysts. In this work, porous TiO2-reduced graphene oxide (TiO2/rGO) nanocomposite as self-supporting efficient electrocatalyst for NRR under ambient conditions were prepared by cold sintering associated with sacrificial template method. The porous TiO2/rGO nanocomposite with grain size of ~40 nm were prepared by cold sintering process at 220 °C and 147 MPa. Given the 220 °C as cold sintering temperature, anatase TiO2 were preserved as the final phase which exhibit much better NRR electrocatalytic performance than the rutile phase. The oxygen vacancy densities in the nanocomposites were also tuned by heat treatment at 450 °C under different atmosphere, while samples heat treated under H2/Ar atmosphere gave the best electrocatalytic NRR performance with a FE of 8.88 % and an NH3 yield of 7.75 μg h?1 cm?2 at ambient conditions. Experiments also shows that the addition of rGO significantly improved the electrocatalytic NRR performance especially the conductivity. This work not only designed a framework of ceramic nanocomposites based self-supporting and durable electrocatalysts system but also paves a feasible way towards preparing electrocatalysts that are sensitive to high temperature fabrication process.  相似文献   

12.
TiO2 thin films were prepared by RF magnetron sputtering onto glass substrates and tungsten was deposited onto these thin films (deposition time 15-60 s) to form W-TiO2 bi-layer thin films. The crystal structure, morphology, and transmittance of these TiO2 and W-TiO2 bi-layer thin films were investigated. Amorphous, rutile, and anatase TiO2 phases were observed in the TiO2 and W-TiO2 bi-layer thin films. Tungsten thickness and annealing temperature had large effects on the transmittance of the W-TiO2 thin films. The W-TiO2 bi-layer thin films with a tungsten deposition time of 60 s were annealed at 200 °C-400 °C. The band gap energies of the TiO2 and the non-annealed and annealed W-TiO2 bi-layer thin films were evaluated using (αhν)1/2 versus energy plots, showing that tungsten thickness and annealing temperature had major effects on the transmittance and band gap energy of W-TiO2 bi-layer thin films.  相似文献   

13.
The article reports on low-temperature high-rate sputtering of hydrophilic transparent TiO2 thin films using dc dual magnetron (DM) sputtering in Ar + O2 mixture on unheated glass substrates. The DM was operated in a bipolar asymmetric mode and was equipped with Ti(99.5) targets of 50 mm in diameter. The substrate surface temperature Tsurf measured by a thermostrip was less than 180 °C for all experiments. The effect of the repetition frequency fr was investigated in detail. It was found that the increase of fr from 100 to 350 kHz leads to (a) an improvement of the efficiency of the deposition process that results in a significant increase of the deposition rate aD of sputtered TiO2 films and (b) a decrease of peak pulse voltage and sustaining of the magnetron discharge at higher target power densities. It was demonstrated that several hundreds nm thick hydrophilic TiO2 films can be sputtered on unheated glass substrates at aD = 80 nm/min, Tsurf < 180 °C when high value of fr = 350 kHz was used. Properties of a thin hydrophilic TiO2 film deposited on a polycarbonate substrate are given.  相似文献   

14.
《Ceramics International》2016,42(12):14071-14076
We modified the refractive index (n) of TiO2 by annealing at various temperatures to obtain a high figure of merit (FOM) for TiO2/Ag/TiO2 (45 nm/17 nm/45 nm) multilayer films deposited on glass substrates. Unlike the as-deposited and 300 °C-annealed TiO2 films, the 600 °C-annealed sample was crystallized in the anatase phase. The as-deposited TiO2/Ag/as-deposited TiO2 multilayer film exhibited a transmittance of 94.6% at 550 nm, whereas that of the as-deposited TiO2/Ag/600 °C-annealed TiO2 (lower) multilayer film was 96.6%. At 550 nm, n increased from 2.293 to 2.336 with increasing temperature. The carrier concentration, mobility, and sheet resistance varied with increasing annealing temperature. The samples exhibited smooth surfaces with a root-mean-square roughness of 0.37–1.09 nm. The 600 °C-annealed multilayer yielded the highest Haacke's FOM of 193.9×10−3 Ω−1.  相似文献   

15.
The phase transformation behavior of TiO2 sol‐gel synthesized nanopowder heated in a sealed quartz capillary from room temperature to 800°C was studied using in‐situ synchrotron radiation diffraction (SRD). Sealing of the capillary resulted in an increase in capillary gas pressure with temperature. The pressures inside the sealed capillary were calculated using Gay‐Lussac's Law, and they reached 0.36 MPa at 800°C. The as‐synthesized material was entirely amorphous at room temperature, with crystalline anatase first appearing by 200°C (24 wt% absolute), then increasing rapidly in concentration to 89 wt% by 300°C and then increasing more slowly to 97 wt% by 800°C, with there being no indication of the anatase‐to‐rutile transformation up to 800°C. The best estimate of activation energy for the amorphous‐to‐anatase transformation from the SRD data was 10(2) kJ/mol, which is much lower than that observed when heating the material under atmospheric pressure in a laboratory XRD experiment, 38(5) kJ/mol. For the experiment under atmospheric pressure, the anatase crystallization temperature was delayed by ~200°C, first appearing after heating the sample to 400°C, after which crystalline rutile was first observed after heating to 600°C. The estimated activation energy for the anatase‐to‐rutile transformation was 120(18) kJ/mol, which agrees with estimates for titania nanofibers heated under atmospheric pressure. Thus, heating the nanopowders material under pressure promoted the amorphous‐to‐anatase transformation, but retarded the anatase‐to‐rutile transformation. This behavior is believed to occur in an oxygen‐rich environment and interstitial titanium is also expected to form when the material is heated under high gas pressure. This suggests that atmospheric oxygen appears to accelerate the amorphous‐to‐anatase transformation, whereas interstitial titanium inhibits TiO2 structure relaxation, which is required for the anatase‐to‐rutile transformation.  相似文献   

16.
The effects of deposition temperature on orientation, surface morphology and dielectric properties of the thin films for Ba0.6Sr0.4TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition were investigated. X-ray diffraction patterns revealed a (2 1 0) preferred orientation for all the films. With rising substrate temperature from 650 °C to 700 °C, the crystallinity and crystal grain size of the films increase, the relative dielectric constant increases, but the dielectric losses have not obvious difference. The film deposited at 350 °C and annealed at 700 °C has strongly improved roughness and dielectric permittivity compared with the film only deposited directly at 700 °C. Three distinct relaxation processes within tan(δ) were found for the BaxSr1?xTiO3 film: a broadened process of the film relaxation, an intermediate peak which originates from Maxwell–Wagner–Sillars polarization, and an extremely slow process ascribed to leak current. The complex dielectric permittivity and loss can be fitted by an improved Cole–Cole model corresponding to a stretched relaxation function.  相似文献   

17.
《Ceramics International》2021,47(18):25324-25336
CrNx/Ag nanocomposite films with varying Ag content were prepared by reactive magnetron sputtering under a constant Ar/N2 stream. The films were annealed between 500 – 800 °C in the air. The microstructure and elemental composition of films were studied by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The mechanical properties were characterized with respect to nano-hardness and high-temperature tribology. The results reveal that the incorporation and concentration of Ag influence the morphology and microstructure of films. The microstructure of films evolves by annealing, and the films with higher Ag concentration exhibit more severe structure evolution. Annealing at 650 °C results in the sublimation of Ag, and the oxide emerges on the film surface. Annealing at 800 °C reveals that the film with 6.2 at.% Ag exhibits superior structural stability, while the one with 20.2 at.% Ag deteriorates. The hardness of films decreases with the increasing Ag concentration and heating temperature. Films with 12.6 at.% Ag and above possess solid lubrication during the sliding at 350–650 °C. Both the friction coefficient and wear resistance are found dependent on the Ag concentration and sliding temperature.  相似文献   

18.
Because of the formation of a surface passive film (rutile TiO2) on its surface layer, titanium metal shows adequate corrosion resistance. As the surface layer (passive film) of titanium metal is very stable, any functionalization of the titanium metal has been generally performed using relatively complicated methods. This is because any direct oxidation of titanium metal only leads to the formation of rutile TiO2 over the entire temperature range. Chemical reactions using titanium chemicals can easily produce anatase TiO2 at temperatures of ≤600°C. Using precursors is one of the ways of producing an anatase TiO2 coating on titanium metal. However, in previous studies, anatase TiO2 layers easily peeled off when they were used in flowing water. Herein, we describe a simple process for obtaining an anatase TiO2 coating layer strongly bonded to the titanium metal surface. In our process, titanium metal was pretreated with a reducing agent to create a surface TiH2 layer, whose condensation reaction easily proceeds with a precursor (composed of oxalic acid and tetra-butoxy titanium). Subsequently, the treated titanium metal was calcinated at 550°C in air to achieve strong bonding between the anatase TiO2 coating layer and titanium metal surface. The treated titanium metal exhibited excellent photocatalytic activity.  相似文献   

19.
The photoelectrocatalytic performance of thermal and particulate TiO2 films on Ti electrode substrates has been studied by photovoltammetry and bulk photoelectrolysis. The thermal TiO2 film electrodes were prepared by Ti annealing in air at 700 °C and 500 °C while the particulate electrodes were prepared from dispersions of Degussa P-25 TiO2 deposited onto Ti substrates and subsequently sintered at 700 °C and 500 °C. The photocurrent in the absence and presence of the model organic species of oxalate as well as its photooxidation rate depends on coating surface area, type (thermal or particulate) and crystallographic form (anatase or rutile). A method is proposed to account for surface area variations by normalising the data with respect to the electroactive surface area of the TiO2 electrodes, as estimated by their surface electrochemistry in the dark. The thermal electrodes show high photocurrents both in the absence and the presence of oxalate whereas the performance of particulate electrodes is significantly improved upon oxalate addition. Nevertheless, the efficiency of thermal 700 °C TiO2 for oxalate photooxidation during bulk photoelectrolysis is comparable to that of Degussa P-25 TiO2-coated electrodes.  相似文献   

20.
The structure, morphology and surface roughness of Bi12TiO20 (BTO) thin films grown on R-sapphire by pulsed laser deposition (PLD) were studied at different substrate temperatures, target-substrate distances, oxygen pressures and laser-pulse repetition rates. Although the substrate temperature seems to be the most important experimental parameter, the gas pressure and the target–substrate distance played important role on the phase formed and film thickness, with a significant effect of the laser-pulse repetition rate on the films thickness and preferred orientation of the deposited film. Single-phase γ-Bi12TiO20 was obtained on substrates at 650?°C, while several BTO metastable phases were observed in films deposited on substrates at temperatures between 500 and 600?°C. By the first time, thin films of pure and textured δ-Bi12TiO20 were successfully growth on substrates at 450?°C. When annealed, all the films deposited at lower temperatures resulted in the thermodynamically stable γ-Bi12TiO20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号