首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous silicon-containing diamond-like carbon (Si-DLC) coatings were deposited by Ar+ ion beam-assisted physical vapor deposition of tetraphenyl-tetramethyl-trisiloxane (704 Dow Corning diffusion pump oil) on AISI 4340 low alloy and 440° C high alloy steel specimens, as well as on thin wafers of the same compositions, in order to evaluate residual stresses within the coatings. During annealing in an argon atmosphere at 200°C for up to 30 min, the residual compressive stress, attributed to hydrogen entrapment during deposition, gradually changed to tensile due to loss of hydrogen, and the rate of stress increase decreased with increasing annealing time. The cohesion and adhesion failure loads of the coatings decreased with annealing time, as did the friction coefficient between the coating and a diamond stylus. The specific wear rate, measured by pin-on-disk tribometry, increased with annealing time. These properties are affected not only by the change in residual stress state during annealing, but most likely also by devitrification and the accompanying grain growth. If these effects are neglected, then the properties may be correlated directly with residual stresses in the coating.  相似文献   

2.
The corrosion protection characteristics of an epoxy-polyamide coating were investigated by electrochemical impedance spectroscopy in immersion tests performed in a 3.0% NaCl solution. Carbon steel and galvanized steel substrates were employed. A porous film was produced on the metallic substrates, which allows for electrochemically reactive areas to be developed inside the pores. An effective corrosion-resistant system was produced in the case of the galvanized steel substrates, due to the precipitation of zinc-containing corrosion products that contribute to the sealing of the coating. Conversely, no effective protection was found for carbon steel specimens, since in this case the local accumulation of the corrosion products causes swelling of the coating.  相似文献   

3.
Cellular tests have been applied to study the biocompatibility of high purity multiwalled carbon nanotubes (MWNTs). The viability of fibroblasts, osteoblasts and osteocalcin concentrations in osteoblasts cultures in the presence of nanotubes has been examined, as well as the degree of cells stimulation, based on the amount of released collagen type I, IL-6 and oxygen free radicals. The high level of viability of the examined cells in contact with the nanotubes, the slight increase of collagen formation, the lack of pro-inflammatory IL-6 cytokine as well as the induction of free radicals, confirm a good biocompatibility of nanotubes, which is similar to that of polysulfone currently used in medicine. The collagen synthesis induced on nanotubes by both fibroblasts and osteoblasts may be significant for future medical applications of nanotubes, in particular as substrates for the regeneration of tissues.  相似文献   

4.
Oleoylchitosan (OCS) self‐assembled nanoparticles as a carrier system for hydrophobic drug delivery was proposed. The OCS nanoparticles were prepared by an o/w emulsification method. Mean diameter of the OCS nanoparticles was around 275.3 nm. All the OCS and OCS nanoparticles have good biocompatibility from the cytotoxicity testing and erythrocyte toxicity assay. And the biocompatibility of OCS nanoparticles was better than OCS. Rifampicin, as a model drug, was investigated for its release properties in vitro. The release of rifampicin from solution with pH 6.0 and 6.8 was characterized by a faster release than from solution with pH 3.8. The increase of sodium tripolyphosphate could slower the release of drug. The sample with low concentration of rifampicin, released faster and entirely. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A series of starch/PVA (SP) films with the thickness of 0.05–0.1 mm were cast by solvent method. The swelling and degradation behaviors in simulated blood fluid (SBF) and simulated saliva fluid (SSF) within 30 days were investigated. In vitro biocompatibility was also evaluated. Research purpose of this work was to supply basic data for SP films' potential application in guide tissue regeneration (GTR) technology. It took 10–20 min for different samples to reach to their maximum water absorption and 30 min to lever off. The weight loss of all samples decreased rapidly in the first day in both of SBF or SSF, and then it changed slightly in SSF but decreased step by step in SBF. The mechanical properties of the wet SP films were satisfied with the requirement of GTR membrane. No matter in SBF or SSF, although the mechanical properties decreased rapidly in the first day, they changed slightly after that. Cytotoxicity and L929 fibroblasts attachment test proved that the SP film possesses excellent cell affinity. Hemolysis ratios of all samples were less than 5%. All results demonstrated that SP film is a promising candidate in GTR treatment. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In this study, electrospinning was used to fabricate silk‐fibroin (SF)‐based mats, which served as substrates for the culturing of rat Schwann cells. Microscopic observation and physical parameter measurements revealed that the electrospun SF mats had a nanofibrous structure with favorable physical properties. Fourier transform infrared analysis provided chemical characterization of the molecular confirmation of the SF proteins in the mats. The morphology and immunocytochemistry showed that the mats supported the survival and growth of the cultured Schwann cells, and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide analysis indicated that the electrospun SF mat extract had no cytotoxic effects on Schwann cell proliferation. Collectively, all of the results suggest that the electrospun SF mats might become a candidate scaffold for tissue‐engineered nerve grafts to promote peripheral nerve regeneration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
In this study, as a continuation of our previous studies, chemical modification of low-molecular-weight polystyrenes (PSs) was carried out with various functional group modifiers: epichlorohydrin (ECH), maleic anhydride (MA) and acetic anhydride (AA), in a single stage using a cationic catalyst. It was determined that the amounts of the functional groups bound to the structure of the polymer depended on the molecular weight of the polymer used, and more functional groups were bound to the lower-molecular-weight PSs. It was found that the coating properties (adhesion properties and resistance to aggressive conditions) of the functional group containing PS to the metal surface depended on the structure and the amount of the functional groups bound to the aromatic ring of the polymer. In addition, it was observed that the PS modified with MA and ECH having carboxyl- and epoxy-groups in their aromatic rings had higher adhesion, as well as higher corrosion resistance properties. Various functional groups bound to the aromatic ring of the polystyrene and their amounts were determined by spectral and chemical analysis methods.  相似文献   

8.
This study for the first time shows the effective utilization and production of chitin monomers at laboratory level, with immense potential for its biomedical application. Low molecular weight (LMW) N-acetylglucosamine (GlcNAc) is prepared by depolymerization of chitin using chemical method coupled with a physical separation method. A novel filtration strategy exploiting polysulfone hollow fiber membrane is used for the preparation of GlcNAc particles with 94% yield within 8.5 ± 0.5 h. This high efficiency is analyzed using high-pressure liquid chromatography. The GlcNAc obtained was further analyzed using dynamic light scattering, first derivative Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The antimicrobial properties of GlcNAc, chitin, and GlcNAc/chitin mixture were investigated using minimal inhibitory concentration against S. aureus and E. coli. Bacteriostatic property was exhibited by high molecular weight chitin, while GlcNAc and GlcNAc/chitin mixture (LMW) demonstrated bactericidal activity. Blood biocompatibility below 0.25 g/ml and cytocompatibility with NIH3T3 fibroblast cells and the proliferative efficacy suggested its utilization and suitability of these particles in biological applications.  相似文献   

9.
A “Clay Bio Polymer Nanocomposite” (CBPN) to be used in drug release was prepared by dispersion of montmorillonite (Mt) particles in chitosan (Ch) solution. The obtained hybrid material was characterized for in vitro biocompatibility on Caco-2 cell cultures. Cytotoxicity and cell proliferation of the nanocomposite were tested, comparing results with free Ch and Mt. Cell proliferation was assessed both by WST-1 test and wound-healing measurements by means of Image Analysis Software. The last method is a proof of concept test that has the advantage of direct visualization and quantification of cell growth. Nanocomposite was also characterized for hydration (water uptake) pattern and mucoadhesive properties, which were considered as important features for the application of this material in modified release systems.Results showed that the prepared CBPN showed good biocompatibility in the range 5–500 μg/ml, being also able to effectively stimulate cell proliferation. Moreover, nanocomposite possessed mucoadhesive properties combined with low solubility in acidic environment. We conclude that interaction between Ch and Mt produced a new biohybrid material that can be considered as promising candidate for modified drug delivery formulations.  相似文献   

10.
《Ceramics International》2016,42(14):15502-15510
In this paper, coatings of hydroxyapatite partially substituted with zinc (ZnHA) were produced on titanium substrates by a two-step hydrothermal process using a precursor solution rich in calcium, phosphate and zinc. Activation of titanium surfaces was performed by oxidation with an acidic HF/HNO3 solution. The coated substrates were then converted into HA by immersion in an alkali 0.1 M NaOH solution. The ZnHA samples were characterized by several techniques and their in vitro behavior was studied in comparison to hydroxyapatite (HA) and titanium (Ti-control) samples. A uniform and homogeneous calcium-deficient carbonate apatite coating was obtained for all samples, both doped and undoped with zinc. The percentage of zinc incorporated in the coatings is 7 at%, and the Ca/P ratio is 1.61(±0.01) for both types of samples, suggesting that Zn is incorporated substitutionally, replacing Ca atoms into the HA structure. The incorporation of Zn in the HA structure changed the crystals morphology, reduced crystals sizes and decreased the deposition rate showing that zinc is an inhibitor of the growth of HA crystal. X-ray diffraction showed that HA is the single crystalline phase present after alkali treatment. The coating adhesion strength was evaluated in terms of the critical load (Lc) obtained from scratch tests and no significant difference was found between the two tested groups, indicating the good adhesion of ZnHA to Ti substrates. The in vitro response of human osteoblasts (HOB) exposed to the surfaces of HA and ZnHA coatings was evaluated. The results of Live/Dead tests showed cell viability for all samples surfaces, but the adhesion and proliferation tests showed that ZnHA samples presented better adhered and spread cells compared with HA. ZnHA coatings presented cells with elongated or polygonal shapes and clearly more spread than HA. Quantitative analysis showed that there was a significantly higher number of cells adhered to ZnHA coatings compared to HA, indicating the zinc incorporation stimulates osteoblast proliferation.  相似文献   

11.
The aim of this study was to compare the mucoadhesive properties of thiolated chitosans with regard to their molecular mass and type of immobilized thiol ligand. Mediated by a carbodiimide, aromatic‐ and aliphatic‐thiol‐bearing compounds were covalently attached to low‐ and medium‐molecular‐mass chitosan. All synthesized conjugates displayed on average 320 ± 50 μmol of immobilized free thiol groups per gram of polymer. The rheological synergy was observed by the mixture of equal volumes of polymer with mucin solution. Because of the increase in viscosity of the conjugate/mucin mixture, the self‐crosslinking properties and the interaction of thiomers with the mucus layer could be confirmed. Further mucoadhesion of the chitosan conjugates was evaluated in vitro with the rotating cylinder method and tensile studies on excised porcine intestinal mucosa. The results show a significantly enhanced residence time (p < 0.05) on the mucosa of all thiolated chitosans compared to the unmodified polymer. Among all of the conjugates tested, the following rank order of mucoadhesion could be determined: Chitosan–thiobutylamidine > Chitosan–4‐mercaptobenzoic acid > Chitosan–glutathione > Chitosan–6‐mercaptonicotinic acid > Chitosan–N‐acetyl cysteine > Chitosan–thioglycolic acid > Unmodified chitosan. The charge, pKa, and reactivity of the attached compounds were found to be important factors influencing the mucoadhesive potential of the polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
《Ceramics International》2020,46(10):16439-16446
Bredigite (Ca7MgSi4O16) is a bioceramic with excellent bioactivity and bioresorbability; nonetheless, its inadequate mechanical strength and biocompatibility limit its tissue-engineering application. In this research, interconnected porous bredigite scaffolds were fabricated by sol-gel, sacrificial sponge replica and sintering processes for bone tissue engineering. In order to improve their strength and cytocompatibility, the scaffolds were coated with poly(lactic-co-glycolic acid) (PLGA) via immersion in acetone-based solutions containing different concentrations (5, 10 and 15% w/v) of the polymer. Based on the results, the PLGA coatings to 10% do not suppress the porosity characteristics of the scaffolds appropriate for tissue engineering. It was also found that the polymeric coatings significantly enhance the compressive strength of the ceramic scaffolds, where this alteration is improved by increasing the PLGA concentration of the coating solution. In addition, the viability of stem cells on the bredigite scaffolds are improved by using the PLGA coatings, with the optimal concentration of 10% PLGA according to MTT and cell attachment studies.  相似文献   

13.
For the clinical application of biodegradable hemostatic surgical clips in laparoscopic surgery, it is necessary to determine their degradability and biocompatibility. Herein, in vitro and in vivo studies were undertaken to evaluate the degradability and biocompatibility of bioabsorbable clips made of poly(p-dioxanone). Changes in weight loss, pull-off force, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) of the poly(p-dioxanone) clips were determined after they were degraded in deionized water and phosphate buffer saline for the in vitro experiment and in laparoscopic models of bile duct ligation(BDL) and right gastroepiploic artery ligation(GEAL) using New Zealand white rabbits for the in vivo experiment. Changes in weight loss and pull-off force were greater in the in vivo experiment than the in vitro experiment. DSC showed the greatest variation in the degree of crystallinity of the clips degraded in deionized water. Stark differences in SEM were observed after 4 weeks of degradation both in vitro and in vivo. Furthermore, the cytocompatibility of the clips was considered satisfactory because the L929 cells could adhere to the clips and proliferate adequately in the presence of the clip extract. Biocompatibility was inferred based on the histological analysis of BDL and GEAL, no significant inflammatory responses were observed after 4 weeks of ligation.  相似文献   

14.
An innovative approach to improving the wear resistance and load-carrying capacity of surfaces is by development of novel systems featuring coating treatment. Evaluation of the tribological performance of three physical vapor deposition (PVD) coatings, namely, TiN, WC/C, and DLC (diamond-like carbon), is necessary to determine their suitability as coatings for high-speed and heavy-duty power-transmitting gears. The uncoated and coated steel balls were subjected to four-ball tests under lubricated conditions. An optical microscope and a scanning electron microscope were used to observe wear scars, and energy-dispersive X-ray analysis was performed to determine the chemical compositions of the materials; these methods were also used to analyze the wear mechanisms. The wear performance of the three coatings was compared, and a four-ball method extreme pressure test was performed to determine the last nonseizure load of each tribo-pair. The WC/C and DLC coatings showed excellent tribological performance under high contact pressures and thermal loads, and the benefits of these coatings increased with decreasing performance of the lubricating medium. Therefore, WC/C and DLC coatings are suitable for application in high-speed and heavy-duty gears. Oxidation wear and peeling, fatigue pitting, and adhesive transfer are the main coating failure modes of the TiN, WC/C, and DLC coatings, respectively.  相似文献   

15.
In this study, poly(l-lactic acid) (PLLA) fibers were prepared by the dry-wet-spinning method, while chitosan (CHS) fibers were prepared via the wet-spinning method. The two fibers were blend spun and then fabricated into PLLA/CHS fabrics. In vitro degradation experiments of the fabrics were carried out in a phosphate-buffered solution at 37 °C with a pH of 7.4. Changes in molecular parameters (molecular weights and molecular weight distributions), phase structures (crystallinities), morphologies (fiber surface topologies) of the PLLA fibers, and their macroscopic properties (the fabric weight losses and mechanical strengths) were monitored with degradation times. These results were compared with control samples with no degradation. The hydrolysis mechanism of PLLA/CHS fabrics was analyzed. It was found that the degradation rate of dry-wet-spun PLLA fibers was higher than those of the melt-spun or dry-spun ones. Furthermore, the compatibility between PLLA/CHS fabrics and osteoblast under the in vitro degradation was investigated for the potential application of using the PLLA/CHS fabrics as supporting materials for chest walls and bones. Cell strain hFOB1.19 human SV40-transfected osteoblast and PLLA/CHS mixed fabrics were incubated. The cell morphology at early stages of cultivation was also studied. Excellent adhesion between osteoblast and PLLA/CHS fabrics was observed, indicating good biocompatibility of the fabrics with osteoblast.  相似文献   

16.
Y2Si2O7 coatings were formed on Hi-Nicalon-S SiC fibers by reaction of solution-derived YPO4 coatings with glass SiO2 scales formed by fiber oxidation. Two oxidation methods were used: pre-oxidation, where fibers were oxidized prior to YPO4 coating, or post-oxidation, where fibers were first coated with YPO4 and then oxidized. Fibers with YPO4/SiO2 films were heat-treated in argon at 1200°C for 20 hours to react YPO4 and SiO2 to Y2Si2O7. The effects of SiO2 to YPO4 film thicknesses on fiber strength and on the Y2Si2O7formation kinetics were investigated. An optimized process to obtain single-phase continuous Y2Si2O7 coatings on Hi-Nicalon-S fibers with low loss in fiber strength is suggested.  相似文献   

17.
18.
Hydroxyapatite/polyetheretherketone (HA/PEEK) composite materials were prepared via an in situ synthesis process in order to achieve strong bonding between PEEK matrix and hydroxyapatite fillers, and ultimately to improve the mechanical properties of the composites. In the study, the biocompatibility of the synthesized HA/PEEK materials was investigated by acute toxicity test, hemolytic test, sensitization test, pyrogen test, intradermal test, and toxicity assay test on animal tissue and cells for the purpose of examining the possible adverse effects of the residue organic chemicals from the in situ synthesis process. In vivo bioactivity of both lab‐synthesized PEEK and HA/PEEK composites with various HA content was also studied. It is found that the in situ synthesized composite materials possess good biocompability without toxicity. Although the bioactivity of the material increases with HA content, the composite material with 5.6 vol % HA exhibits satisfactory bioactivity without compromising its excellent mechanical performance, which hints to a potential use as load‐bearing orthopedic material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The fabrication, surface functionality, and biocompatibility of membranes prepared from blends of polycaprolactone (PCL) and curcumin powder (CURP) (PCL/CURP) were studied. Acrylic acid (AA)-grafted polycaprolactone (PCL-g-AA) was evaluated as an alternative to PCL. Mouse tail-skin fibroblasts (FBs) were seeded on two series of these films to assess cytocompatibility. Collagen and cell proliferation analyses indicated that PCL, PCL-g-AA, and their composite membranes were biocompatible with respect to FB proliferation. However, FB proliferation, collagen production and the percentage of normal cells growing on PCL/CURP membranes were greater than those for PCL-g-AA/CURP membranes. Rapid apoptosis was not observed with assays of FBs on the PCL-series membranes, demonstrating the potential of PCL/CURP or PCL-g-AA/CURP membranes for biomedical applications. Moreover, CURP enhanced the Escherichia coli (BCRC 10239) antibacterial activity and antioxidant properties of the membranes. Membranes of PCL-g-AA or PCL containing CURP had better antibacterial and antioxidant activity.  相似文献   

20.
《Ceramics International》2022,48(1):514-524
To enhance the tribological properties of Si3N4 based ceramics, surface textures of dimples combined with DLC coatings are fabricated on Si3N4/TiC ceramic surface by nanosecond laser and plasma enhanced chemical vapor deposition (PECVD). The dry friction and wear performances are evaluated by unidirectional sliding friction tests using a rotary ball-on-disk tribometer. Results reveal that the friction and wear properties of Si3N4/TiC ceramics are significantly enhanced by DLC coatings or dimpled textures, and the DLC coatings combined with dimpled textures show the best efficiency in reducing friction, adhesion and wear. This improvement can be explained by the synergistic effect of DLC coatings and surface textures, and the synergistic mechanisms are attributed to the formation of lubrication film and secondary lubrication, debris capture of dimpled textures, increased surface hardness and mechanical interlocking effect, and reduced contact area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号