首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杉木苯酚液化物合成热固型酚醛树脂的研究   总被引:3,自引:1,他引:2  
以杉木为研究树种,对比不同料液比(木材与苯酚质量比)液化物与甲醛在碱性环境中反应,进行热固酚醛树脂制备试验。考察不同甲醛与苯酚物质的量之比值(rF/P)、氢氧化钠与苯酚物质的量之比值(rNaOH/P)和树脂化温度对树脂理化性能的影响。结果表明,采用料液比为1:2的液化物,rF/P1.8,rNaOH/P0.7,树脂化温度 80℃ 条件下合成的杉木液化物树脂压制的杨木三层胶合板满足I类胶合板强度要求,各项物理力学性能与常规PF树脂压制的板材相当,板材的甲醛释放量为 0.1 mg/L,远低于GB/T 9846-2004《胶合板》中的E0级要求。  相似文献   

2.
羧甲基化木材制备木材—热固性酚醛树脂粘合剂   总被引:2,自引:0,他引:2  
将典型的纤维素酯化和醚化改性反应移植于木材化学改性,可使木材转化成为可熔可溶的类塑料材料,从而为木材的加工,应用及废旧木材的回收等木材综合利用技术开辟了全新的途径。其中以按甲基化木制备CMW一甲阶酚醒树脂的研究尤为典型。其方法为:松木粉(40目,冷水抽提,干燥以异丙醇作溶剂,单氯乙酸作按甲基化剂,NaOH作予润胀剂及催化剂,于55℃反应3.sh,进行按甲基化,把核甲基化木(CMW帅D入到计算量的苯酚及35%盐酸混合液中于90~95℃搅拌lho将计算量的甲醇和NaOH溶液加到CMW苯酚溶液中于规定温度下搅拌反应规定时间,冷…  相似文献   

3.
在碱性条件下由竹材苯酚液化物和多聚甲醛制备出具有优良发泡性液化竹基酚醛树脂.考查了竹材液化物树脂化时间、温度、多聚甲醛与苯酚的物质的量比、氢氧化钠与苯酚物质的量比等因素对液化竹材酚醛树脂(BPE)黏度及其固含量的影响.结果表明,采用n(多聚甲醛)/n(苯酚)=1.2,树脂化时间为2 h,温度为70℃,n(氢氧化钠)/n...  相似文献   

4.
To prepare phenolic resol resin, corn bran (CB) was liquefied in the presence of phenol and the liquefied CB was condensed with formaldehyde under alkaline condition. From NMR spectra of phenolated CB and phenolated CB–based resol resin, it was found that phenol was reacted with depolymerized CB components and the phenolated CB was methylolated by condensation with formaldehyde. Molecular weight distribution was divided into a high molecular weight zone, attributed mainly to phenolated CB, and a low molecular weight zone, which was attributed to the condensation reactants of formaldehyde and the unreacted phenol of liquefied CB. When reaction conditions became severe, a high molecular weight zone was increased. Formaldehyde/unreacted phenol of liquefied CB molar ratio most affected the change of a low molecular weight zone. To reduce the viscosity of the phenolated CB–based resol resin, a milder condensation condition was required compared with that for preparing the conventional resol resin. Properties of the resol resin were comparable to those of conventional resol resin for plywood manufacture. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1365–1370, 2003  相似文献   

5.
The reactive multihydroxy soybean oil (MHSBO) was synthesized from epoxidized soybean oil (ESBO). The ESBO was reacted with ethylene glycol to obtain MHSBO having high functionality. This study investigated a feasibility to prepare wood adhesive through the reaction of polymeric methylene‐diphenyl‐4,4′‐diisocyanate (pMDI) with MHSBO. Different polyurethane adhesives were prepared with a variety of equivalent mole ratios (eq. mole ratios) of MHSBO to pMDI. The chemical reactions of adhesives were analyzed using 1H NMR and Fourier transform infrared (FTIR), and their thermal studies were investigated by DSC and TGA. The MHSBO/pMDI resins (3 : 1 and 2 : 1 eq. mole ratios) showed endothermic peaks, whereas the MHSBO/pMDI resins (1 : 2 and 1 : 3 eq. mole ratios) showed exothermic peaks. The best adhesion strength was found when plywood was bonded with the adhesive of a eq. mole ratio of 2 : 1 (MHSBO : pMDI). These results indicated that the bond strength was not related to the reactivity obtained from the FTIR spectra. But it was explained that the adhesion strength increased as the residual  NCO groups in the adhesive reacted with the hydroxy groups of wood during the manufacturing of plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
杉木液化产物用于胶粘剂制备的研究   总被引:2,自引:0,他引:2  
李彩云 《粘接》2005,26(5):24-25,37
研究用少量的苯酚液化木材及其产物用于胶粘剂制备的方法,在硫酸催化剂作用下,用苯酚液化杉木木粉,得到木材液化产物.在液化产物中加入适量的甲醛和氢氧化钠溶液制备热固性酚醛树脂.压板测试结果表明,由木材液化产物所得树脂的干状胶合强度令人满意,但经蒸汽循环试验后,湿状胶合强度尚达不到JAS标准的要求,在下阶段工作中,需进一步研究木材液化产物胶粘剂的改性以提高其胶合耐久性.  相似文献   

7.
A liquefied wood‐based resol resin was prepared with excellent yield by a reaction of liquefied wood and formaldehyde under alkaline conditions. The effects of various reaction parameters on the extent of the yield of the resol resin, unreacted phenol content, and viscosity were investigated. Milder resol resinification conditions were required as compared to those used in conventional methods. The liquefied wood‐based resol resin was successfully applied to produce phenolic foam using appropriate combinations of foaming agents. Diisopropyl ether with a relatively higher boiling temperature was suitable for the foaming of liquefied wood‐based resol resin. Hydrochloric acid and poly(ethylene ether) of sorbitan monopalmitate were used as a catalyst and a surfactant, respectively. The obtained foams showed satisfactory densities and compressive properties, comparable to those of foams obtained from conventional resol resin. Foams with low density were obtained by the blending of liquefied wood‐based resol resin and conventional resol resin. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 468–472, 2002; DOI 10.1002/app.10018  相似文献   

8.
树皮是一种来源丰富可再生的天然高分子材料。本文采用高温苯酚液化的方法,在复合酸存在下将落叶松全树皮液化成为木材胶粘剂的原料。研究了树皮液化产物制备木材胶粘剂的合成工艺,特别是碱用量对苯酚液化落叶松全树皮一甲醛胶粘剂各主要性能的影响。结果表明,增加碱用量会缩短树皮胶的贮存期,但可降低胶中的游离甲醛;通过降低树皮胶合成时的终点黏度,并在合成末期用水稀释,可有效提高树皮胶的适用期,并可确保树皮胶具有很好的胶接强度和耐水性、较快的固化速率以及很低的游离甲醛释放量。  相似文献   

9.
Nine structural adhesives with varying pH were selected to examine the effect of adhesive pH on wood–adhesive bond quality. The adhesives evaluated included four highly alkaline phenol–formaldehyde, one intermediate pH phenol–resorcinol–formaldehyde, two acidic melamine–urea–formaldehyde, and two acidic melamine–formaldehyde resins. Block shear specimens were prepared using Douglas‐fir and black spruce wood. The adhesive performance was evaluated by measuring the shear properties (strength and wood failure) of the specimens tested at the dry and vacuum–pressure–redry (VPD) conditions. Adhesive pH, test condition, and wood species showed significant effects on shear properties. The different adhesives performed differently at the dry and VPD conditions. The high‐pH adhesives (phenol–formaldehyde and phenol–resorcinol–formaldehyde) showed similar high wood failures at both test conditions and performed better than the low‐pH adhesives (melamine–formaldehyde and melamine–urea–formaldehyde), especially after the VPD conditioning. The low‐pH adhesives showed high wood failure at the dry condition, but wood failure decreased significantly after VPD conditioning for both species, indicating that the low‐pH adhesives were less durable than the high‐pH adhesives. High‐pH adhesives did not have a negative impact on the strength of the bonded specimens. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Cold-set epoxy-based wood adhesives were investigated for production of exterior plywood. Effective adhesives were composed of bisphenol A diglycidyl ether (BPADGE), polyamidoamine (PAA), and polyethylenimine (PEI). Three-ply plywood panels were prepared with BPADGE–PAA–PEI adhesives and evaluated for their strengths and water resistance in accordance with a standard for exterior plywood. The effect of BPADGE/(PAA + PEI) weight ratio, PAA/PEI weight ratio, the mixing time for preparing the adhesive, and the pressing time for making plywood panels on the water resistance and the shear strengths of the plywood panels was investigated. The pot life of the adhesive was also measured. Plywood panels made with the BPADGE–PAA–PEI adhesives met the industrial requirements for exterior applications. Adhesion mechanisms are discussed in detail. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47741.  相似文献   

11.
In this study, alkaline lignin (AL), dealkaline lignin (DAL), and lignin sulfonate (SL) were liquefied in phenol with sulfuric acid (H2SO4) or hydrochloric acid (HCl) as the catalyst. The phenol‐liquefied lignins were used as raw materials to prepare resol‐type phenol‐formaldehyde resins (PF) by reacting with formalin under alkaline conditions. The results show that phenol‐liquefied lignin‐based PF resins had shorter gel time at 135°C and had lower exothermic peak temperature during DSC heat‐scanning than that of normal PF resin. The thermo‐degradation of cured phenol‐liquefied lignin‐based PF resins was divided into four temperature regions, similar to the normal PF resin. When phenol‐liquefied lignin‐based PF resins were used for manufacturing plywood, most of them had the dry, warm water soaked, and repetitive boiling water soaked bonding strength fitting in the request of CNS 1349 standard for Type 1 plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Development and characterization of a wood adhesive using bagasse lignin   总被引:8,自引:0,他引:8  
Bagasse is spent fiber left after extraction of sugar. It is mainly used as a fuel to concentrate sugarcane juice. In the present work, the possibility of preparing wood adhesives from bagasse has been explored. The parameters for the preparation of a lignin phenol formaldehyde (LPF) adhesive, (lignin concentration, formaldehyde to phenol molar ratio, catalyst concentration, reaction time and reaction temperature) have been optimized. It was found that up to 50% of phenol can be substituted by bagasse lignin to give LPF wood adhesive having better bonding strength in comparison to a control phenol formaldehyde (CPF) wood adhesive. Prepared resins were characterized using IR, DSC and TGA. IR spectra of LPF resin showed structural similarity with CPF resin. Thermal stability of LPF resin was found to be lower as compared to CPF resin. DSC studies reveal a lower curing temperature for LPF adhesive in comparison to CPF adhesive. A shelf-life study reveals that LPF exhibits consistent behavior as compared to CPF in respect to adhesive strength.  相似文献   

13.
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three‐necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac‐type liquefied wood/phenol/formaldehyde (LWPF) resins: LWPF1 (the atmospheric reactor) and LWPF2 (the sealed reactor). The LWPF1 resin had a higher solid content and higher molecular weight than the LWPF2 resin. The cure kinetic mechanisms of the LWPF resins were investigated with dynamic and isothermal differential scanning calorimetry (DSC). The isothermal DSC data indicated that the cure reactions of both resins followed an autocatalytic mechanism. The activation energies of the liquefied wood resins were close to that of a reported lignin–phenol–formaldehyde resin but were higher than that of a typical phenol formaldehyde resin. The two liquefied wood resins followed similar cure kinetics; however, the LWPF1 resin had a higher activation energy for rate constant k1 and a lower activation energy for rate constant k2 than LWPF2. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Commercial phenol–formaldehyde (PF) adhesive was gradually substituted by increasing amount of the phenol-rich fraction (PRF) of crude bio-oil up to 40 wt%. The effect of substitution level of the PRF on the chemical, curing, morphological scanning electronic microscope (SEM), and bonding characteristics of the PF adhesive was determined. The tensile-shear strength of single lap-joint wood specimens bonded with the modified PF adhesives was investigated under indoor and outdoor exposure conditions. The chemical composition of the PRF was investigated using some chromatographic and spectroscopic techniques. Further structural analysis of PRF-modified PF adhesives was determined using Fourier transform infrared spectroscopy (FTIR). The PRF resol had a similar molecular structure to commercial pure phenol resol adhesive. The PRF could be partially substitute for the petroleum-based phenol in commercial PF adhesives with inexpensive phenols derived from lignocellulosic wastes.  相似文献   

15.
The aim of this work is to evaluate performances of tannin-based resins designed as adhesive in the plywood production. For this purpose, a part of phenol formaldehyde (PF) and melamine formaldehyde (MF) in the classic adhesive formulation was replaced by tannin. The physical properties of the formulated resins (rheological characterization, etc.) were measured. In order to analyze the mechanical performance of tannin-based resins, plywood panels were produced and the mechanical properties including tensile strength wood failure and three-point bending strength were investigated. The performance of these panels is comparable to those of plywood panels made by commercial PF and MF. The results showed that the plywood panels bonded with tannin–PF (PFT) and tannin–MF (MFT) resins exhibited better mechanical properties in comparison to the plywood panels made of commercials PF and MF. The introduction of small properties of tannin in PF and MF resins contribute to the improvement of the water performance of these adhesives. The formaldehyde emission levels obtained from panels bonded with tannin-based resins were lower than those obtained from panels bonded with control PF and MF. Although there are no actual reaction at all between PF, MF, and tannin, addition of tannin significantly improves the water resistance of PF and MF resins. This is a novel finding that manifests the possibility of replacing a convention PF and MF resins by tannin. Modified adhesive is one of the goals in the plywood production without changing any of their production conditions with improvement to their overall properties.  相似文献   

16.
研究开发以淀粉为主要原料的环保型胶黏剂替代"三醛类"木材胶黏剂,对彻底解决人造板及其制品的甲醛释放问题具有重要意义。以野生葛根淀粉为原料,通过降黏处理,并与聚醋酸乙烯酯和异氰酸酯复配,制备出胶合强度达到国家Ⅱ类要求的淀粉基木材胶黏剂。研究了降黏剂用量、降黏时间、聚醋酸乙烯酯和异氰酸酯用量对淀粉基木材胶黏剂胶合强度的影响。优化工艺条件下制备胶黏剂胶接胶合板的胶合强度为1.89 MPa,能够满足国家Ⅱ类胶合板强度要求。  相似文献   

17.
Sugi (Criptmeria Japonica) wood meal was liquefied at 150°C with a mixture of poly(ethylene glycol) 400 and glycerin in the presence of a sulfuric acid catalyst. The resulting liquefaction products were used directly to prepare isocyanate adhesives via mixing with polymeric diphenylmethane diisocyanate without the removal of the residue. The properties of the liquefaction products and the performances of bonded plywood were tested. The results showed that the residue content decreased and the hydroxyl value increased as the reaction time increased. The viscosity and weight‐average molecular weight significantly changed with the reaction time. All the dry test results of the shear strength met the Japanese Agricultural Standard (JAS) criteria for plywood. After a cyclic steaming treatment, however, only the plywood bonding with adhesives from the liquefied wood with a reaction time of 1.5 h satisfied the JAS criteria. The wood failure was very low. The emissions of formaldehyde and acetaldehyde were extremely low. Liquefied‐wood‐based isocyanate adhesives have the potential to become ideal wood adhesives because of their bond durability, safety, and recyclability.  相似文献   

18.
For the synthesis of biomass-based resol resins, cornstalk powders were liquefied in a hot-compressed phenol–water (1:4, wt./wt.) medium at 300–350 °C. It was observed that essentially no phenol was reacted with the cornstalk degradation intermediates during the liquefaction process. The cornstalk-derived bio-oils contained oligomers of phenol and substituted phenols, originated primarily from the lignin component of the cornstalk feedstock. Using the cornstalk-derived bio-oils, resol resins were readily synthesized under the catalysis of sodium hydroxide. The biomass-derived resol resins were brown viscous liquids, possessing broad molecular weight distributions. In comparison with those of a conventional phenol resol resin, the properties of the bio-based resins were characterized by GPC, FTIR, DSC and TGA. The as-synthesized bio-oil resol resin exhibited typical properties of a thermosetting phenol–formaldehyde resin, e.g., exothermic curing temperatures at about 150–160 °C, and an acceptable residual carbon yield of ca 56% at 700 °C for the cured material.  相似文献   

19.
制备了不同尿素用量的系列尿素改性酚醛(PUF)树脂体系(当尿素用量为苯酚质量的0、25%、43%、66%时分别记为PF、PUF-1、PUF-2、PUF-3),并将其用于制备胶合板,研究树脂在胶合板加工过程中的变化。结果表明:PUF-3树脂与桉木和杨木的接触角为79.6°和81.1°,小于PF树脂的,PUF对桉木相容性比杨木优良,PF树脂则相反;对4种树脂进行DSC分析显示,PF、PUF-1、PUF-2、PUF-3固化速率最大温度分别为146.8、171.4、171.8和171.8℃;PUF-3和面粉共混体系的流变行为显示该共混体系110℃开始发生固化反应,(130±5)℃为较合适的热压温度;对热压前后PF和PUF-3进行热重分析,结果发现PUF的耐高温性能优于PF,热压后形成的结构耐热性也更好;4种树脂压制的胶合板性能达到E0级,甲醛释放量均小于0.5mg/L,胶合强度分别为1.42、1.11、0.98和0.92MPa。  相似文献   

20.
木质素在人造板胶黏剂中的应用   总被引:7,自引:0,他引:7  
综述了木质素在酚醛树脂、脲醛树脂、三聚氰胺甲醛树脂3种人造板胶黏剂中的应用进展,指出了利用无毒、稳定、价廉、可再生的木质素代替不可再生且有毒的苯酚、甲醛制取工业用人造板胶黏剂是木材用胶黏剂领域的重要研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号