首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ar ion beam etching (IBE) can be used to roughen a Cu surface and thus improve the adhesion of subsequently spin-coated polyimide (PI) films. During Ar IBE, the surface morphology of sputter-deposited Cu changes from round bumps to a rough cone structure. The ultimate tensile strength (UTS) of the PI/Cu interface is increased for certain specific beam conditions. Under optimal conditions, the UTS of the etched PI/Cu interface (6.2 MPa) is twice that of the unetched PI/Cu interface (3.1 MPa). Cu is detected in the deposited PI by Rutherford backscattering spectrometry (RBS). The amount of Cu at the top surface of the 2.5 μm thick PI film is 0.1 at. %; this is determined by RBS and XPS. While the Cu is dissolved by polyamic acid and diffuses into the PI, an oxygen-rich region is formed in the Cu. The oxygen-rich region in Cu grows from 50 A (approximately Cu2O) before PI deposition to more than 2000 A (where the oxygen concentration is about 5 at. %) after PI deposition. The oxygen source is not the PI itself but either dissociated oxygen from the water vapor in the PI imidization process or a product of the chemical reaction between Cu and polyamic acid.  相似文献   

2.
Interfacial characteristics such as chemical reaction, metal diffusion, and morphology were investigated for Cu/BCB, Cr/BCB and Ti/BCB structures. Using Auger and XPS depth profiling, the formation of titanium carbide and chromium oxide was confirmed at the metal/BCB interface. Annealing at 250°C for extended periods resulted in the diffusion of Cu, Cr and Ti into the BCB and subsequent formation of Cu-Si, CrSi2 and Ti-Si compound precipitates. The reaction is a thermal diffusion controlled process which is dependent on time and temperature. Ar sputtering treatment of BCB film before metallization was found to roughen the surface, resulting in metal spikes which penetrate into the roughened BCB film. However, the peel strength of metals on BCB was only about 177 g cm_1presumably due to the brittleness of the BCB film. The etch rates of the BCB film in a reactive ion etcher (RIE) and a plasma etcher were measured using Ar, O2, O2 + CF4, and O2 + SF6 gas mixtures. Faster etch rates were obtained when CF4 and SF6 were added to oxygen, since the presence of atomic fluorine enhances the etch rate of organics, while also etching Si and SiO2 formed by exposure of Si-containing BCB film to oxygen gas. Surface compositional changes on the BCB film were observed by XPS after plasma modification. Pure O2 and O2 + CF4 plasmas oxidized the carbo-siloxane linkage (CSiO) of the BCB, resulting in the formation of SiO2 on the surface. The O2 + SF6 plasma, however, did not produce the surface SiO2, because of its faster Si and SiO2 etch rates.  相似文献   

3.
To develop high‐quality electromagnetic interference (EMI) shielding materials, the effect of plasma pretreatment with various gases prior to Cu plating was investigated. Plasma treatment increased the surface roughness in the decreasing order of Ar > O2 > NH3, but adhesion of the Cu layer on poly(ethylene terephthalate) (PET) film increased in the following order of O2 < Ar < NH3, indicating that the appropriate surface roughness and introduction of an affinitive functional group to Pd on the surface of the PET film were key factors for improving adhesion of the Cu layer. As investigated by XPS analysis, plasma treatment with NH3 produced N atoms on the PET film, which enhances the chemisorption of Pd2+ on PET film, resulting in improved adhesion and shielding effectiveness of the Cu layer deposited on the Pd‐catalyzed surface, because of the high affinity of Pd2+ for nitrogen. Comparatively, O2 plasma treatment allowed the chemisorption of more Sn2+ than of Pd2+ due to a lack in the affinity of Pd2+ for oxygen, resulting in the lowest Pd3d/Sn3d ratio; thereby, the lowest EMI–shielding effectiveness (SE) value was obtained. In addition, fairly low adhesion was obtained with Ar plasma‐treated PET, even though the PET surface was significantly etched with Ar plasma, due to introduced oxygen groups on the PET surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1369–1379, 2002; DOI 10.1002/app.10272  相似文献   

4.
Nanocrystalline diamond films are a promising class of nanomaterials with tunable properties. An especially appealing field of application for NCD are nitrogen doped semiconducting films.The residual stress in the films is an important film property directly influencing the adhesion of the film on the substrate and thus the film performance. The residual stress consists of two components: a thermal part due to the different coefficients of thermal expansion of film and substrate and an intrinsic part. The residual stress in most films that are deposited at high temperatures is dominated by an effect arising from the difference in coefficients of thermal expansion in film and substrate. By measuring the residual stress in the film at different temperatures it is possible to calculate the coefficient of thermal expansion of the films. For this purpose an ex-situ optical device was used to measure the residual stress of the film.Nanocrystalline diamond films were deposited by microwave-plasma CVD at a pressure of 200 mbar from an Ar/H2/CH4 plasma while the hydrogen fraction in the process gas and the substrate temperature were varied between 3 to 6% to 600 to 800 °C respectively.To investigate the influence of the nitrogen admixture in the plasma on the thermal expansion coefficient more films were deposited at a pressure of 200 mbar with admixtures of nitrogen of 2.5% and 7.5%.It is shown that by controlling the process parameters the coefficient of thermal expansion in the NCD films can be matched with the silicon substrate for insulating as well as for conductive films and therefore the thermal stress component be minimized. The results are important for the development of MEMS where silicon as a substrate is widely used.  相似文献   

5.
“All-wet process” for fabrication of Cu wiring on a silicon chip was proposed as a novel ultra-large scale integration (ULSI) interconnect technology for integrated circuits (ICs) applications. Electroless-NiB film was deposited on SiO2/Si substrate modified by self-assembled-monolayer (SAM) activated with PdCl2. The NiB film formed by this method has highly uniform, with good adhesion to the substrate and with good diffusion barrier characteristics against Cu diffusion. Cu was electrodeposited directly on the electroless NiB film that acted as a seed layer. This was done without any conventional conductive or adhesive layer that is conventionally formed by physical vapor deposition (PDV). The thermal stability of electroless NiB layer as a barrier preventing copper from diffusing into the SiO2/Si substrate was evaluated by secondary ion mass spectroscopy (SIMS) and sheet resistance measurement at several annealing temperatures. It was confirmed that the electroless NiB film blocked Cu diffusion and kept the layer integrity under annealing temperatures of up to 400 °C for 30 min. The same process of electroless NiB was used for the capping layer that was also formed by “wet process”, as the electroless NiB film deposited selectively onto a surface of Cu wiring was also applicable to a capping layer. We conclude that the proposed process is very promising for sub-100 nm technologies as it offers a variety of desirable properties: it has good step coverage while showing good barrier and seed layer properties.  相似文献   

6.
Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance their adhesion to vinyl ester resin. Gases utilized for plasma etching were Ar, N2 and O2, while monomers used in plasma polymerization coating were acetylene, butadiene and acrylonitrile. Plasma etchings were carried out as a function of plasma power (30–70 W), treatment time (1–10 min) and gas pressure (20–40 mtorr). Plasma polymerizations were performed by varying the treatment time (15–60 s), plasma power (10–30 W) and gas pressure (20-40 mtorr). The conditions for plasma etching and plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Plasma etched and plasma polymer coated carbon fibers were characterized by SEM, XPS, FT-IR and α-Step, dynamic contact angle analyzer (DCA) and tensile strength measurements. In Part 1, interfacial adhesion of plasma etched and plasma polymer coated carbon fibers to vinyl ester resin is reported, while characterization results including tensile strength of carbon fibers are reported in Part 2. Among the treatment conditions, a combination of Ar plasma etching and acetylene plasma polymer coating provided greatly improved interfacial shear strength (IFSS) of 69 MPa, compared to 43 MPa obtained from as-received carbon fiber. Based on the SEM analysis of failure surfaces and load-displacement curves, the failure was found to occur at the interface between plasma polymer coating and vinyl ester resin.  相似文献   

7.
We studied the preparation of antimicrobial silicone rubbers of improved interfacial strength, which could be formed with the ion beam assisted deposition (IBAD) technique for coating metallic or inorganic materials (silver (Ag), Copper (Cu), and Hydroxyapatite(HAp)/TiO2) on the silicone surface. Those coating materials provide high product safety as well as outstanding antimicrobial activity. The deposition methodology is composed of pre‐etching with oxygen gas, vaporizing the coating materials, and post‐treatment with Ar ion. With the evaporation of the coating materials, the Ar beam was focused on the substrate to assist deposition. It was found out that the ion assisting depositions in the IBAD process give a prominent enhancement in adhesion between silicone rubbers and coatings of Ag and Cu. The HAp/TiO2 coating layer was easily dissolved in aqueous saline solution. All deposited layers display high antimicrobial activities against Staphlococcus aureus (ATCC 6538) and Escherichia coil (ATCC 25,922), showing 99.9% reduction of bacteria, respectively. In a cytotoxicity test, the Ag and HAp/TiO2 coated silicone shows a decrease of cytotoxicity, while the Cu coating leads to a slight increase of cytotoxicity. The result on the surface modifications of silicone rubber will be employed in further study for applications of medical or rehabilitation devices. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1095–1101, 2005  相似文献   

8.
Diamond film deposition onto WC-Co substrates exhibits several limitations regarding the final diamond quality in the film and its adhesion due to the chemical interaction between the Co in the substrate and the diamond CVD environment. In the present study, the use of a ~ 1.5 μm thermally nitrided Cr interlayer was examined as an effective diffusion barrier throughout the CVD process. Nitridation of the Cr PVD layer in NH3 environment resulted in the formation of a graded CrN/Cr2N layer comprised mainly of the CrN phase, accompanied with the formation of a porous ‘net-like’ microstructure at the surface. During both thermal nitridation and exposure to the CVD environment up to 360 min, the diffusion of C and Co from the substrate into the interlayer was limited to the region adjacent to the Cr–N interlayer/WC–Co substrate interface, which contained the Cr2N phase. In this region, the Co interacted with the Cr lattice to form a CoCr phase, which was suggested to enhance the chemical binding between the interlayer and the substrate. The region containing the CrN phase was suggested to act as an effective diffusion barrier due to its fully occupied interstitial sites and relatively high crystalline density compared to the underlying Cr2N phase. It was evident that the deleterious effects of Co during the CVD process were successfully suppressed using the Cr–N interlayer and the deposited diamond film exhibited improved adhesion and higher diamond quality.The formation of phases within the interlayer during nitridation and the diamond CVD process, and diamond quality evaluation in the deposited films were investigated by complementary techniques: SEM, XRD, XPS, SIMS and Raman spectroscopy.  相似文献   

9.
In this paper, an environmentally friendly etching system containing H2SO4–MnO2 colloid was used to investigate surface etching for polycarbonate (PC). The effects of swelling condition, H2SO4 concentrations and etching times on surface topography and surface roughness were studied. With the etching treatment, the surface average roughness (R a) of PC substrates increased from 3 to 76?nm and the adhesion strength between the electroless copper and PC substrate reached 1.08 KN/m. Surface chemistry of PC substrates was investigated by the contact angle measurement and X-ray photoelectron spectroscopy spectra (XPS). After the etching treatment, PC surface became hydrophilic and the contact angle decreased from 95.2 to 39.6o. XPS analyses indicate that hydroxyl and carboxyl groups are formed on the PC surface as a result of the etching treatment, which improve the adhesion strength between PC substrate and electroless copper film.  相似文献   

10.
In the present study direct current (dc) sputtered poly(methyl methacrylate) (PMMA) films deposited on silicon substrates were evaluated as masking materials for anisotropic etching of silicon in aqueous potassium hydroxide (KOH) and tetramethyl ammonium hydroxide (TMAH) solutions. Sputtered PMMA films were characterized by FTIR to ascertain the bonding, by X‐ray photoelectron spectroscopy (XPS) for the elemental composition, and by the contact angle for measuring the adhesion of the film with the substrate. FTIR and XPS data showed the presence of a poly(tetrafluoroethylene)‐like film on the silicon substrate. The interfacial tension was calculated from the contact angle value, which was 0.82 dyne/cm, confirming good adhesion of the film and the substrate. A pattern was lithographically transferred through the masking material on the silicon substrate, and the etch rate of the masking layer was calculated from the masking time data of the films. The etch rate value of 4 Å/min obtained for the masking material is low compared to the etch rate of the conventional masking materials (60 Å/min for SiO2 and 8 Å/min for Si3N4). © 2006 Wiley Periodicals Inc. J Appl Polym Sci 102: 2094–2098, 2006  相似文献   

11.
We have investigated the effect of the deposition temperature on the growth of Y1Ba2Cu3O7−x (YBCO) thin film using liquid solution sources on MgO (100) single crystalline substrate and have characterized the superconducting properties. The YBCO films were prepared by aerosol assisted chemical vapor deposition (AACVD). Single solution source of Y, Ba, and Cu β-diketonates dissolved in tetrahydrofuran (THF) was used as precursor. This precursor was passed through an ultrasonic aerosol generator and transported into a hot-wall CVD reactor using Ar as reactant gas (400 secm). The substrate was placed normal to the gas stream and the substrate temperature was varied from 760 to 860 °C. Deposition was carried out in oxygen atmosphere maintaining total pressure of 3.2 Torr inside the chamber. Deposition time was also varied from 10 to 30 min. The grown YBCO thin films were highly oriented to (001) orientation perpendicular to the substrate. The film deposited at 815 °C had a sharp transition to superconducting state about 87 K. The activation energy estimated from the Arrhenius plot is ∼19.14 kJ/mol at the deposition temperature of 815 °C.  相似文献   

12.
Diamond films were chemically vapor deposited (CVD) on titanium, tungsten, molybdenum, copper and aluminum oxide substrates. In these studies, the interface formed between diamond and the substrate was exposed by mechanically deforming the metal substrate or diamond film to cause film delamination. The observed degree of adhesion for these interfaces can be ranked in the order: Ti » Al2O3 (thin films) > Cu > W » Mo. For highly adherent films, delamination procedures were carried out under controlled conditions in order to preserve the integrity of the interfacial species. The exposed interfaces were characterized by X-ray photoelectron spectroscopy (XPS), scanning Auger microscopy (SAM), scanning electron microscopy (SEM) and Raman microprobe spectroscopy. We find that substantial interfacial reaction layers exist at all interfaces except in the diamond-copper system and are composed of both oxides and carbides of the native substrate. Variations in the relative concentration of these species and the distribution throughout the reaction layer also were observed for the different substrates. We believe that both the chemical composition and morphology of the interface influence the adhesion properties of the diamond coating. Correlated investigations of the interfacial surfaces reveal that fracture of the diamond-metal interface occurs discretely at the diamond nucleation plane or within a reaction layer near the diamond interface. We discuss each of these findings in light of qualitative observations of adhesion and suggest avenues for improving the adhesion of diamond films.  相似文献   

13.
Silicon oxide (SiOx) film deposition on the surface of oriented poly(propylene) (OPP) films was done to form a new oxygen gas barrier material using plasma polymerization of the tetramethoxysilane (TMOS)/O2 mixture. The SiOx film deposition on OPP films never improved oxygen gas barrier properties. The inefficacy of the SiOx deposition was due to poor adhesion at the interface between the deposited SiOx and OPP films and also to the formation of cracks in the deposited SiOx film. If prior to the SiOx film deposition surface modification of OPP films was done by a combination of the argon plasma treatment and TMOS coupling treatment, this contributed effectively to strong adhesion leading to success in the SiOx deposition on the OPP film surface, and then the oxygen gas barrier ability was improved. The oxygen permeation rate through the SiOx‐deposited OPP film was decreased from 2230 to 37–52 cm3/m2/day/atm, which was comparable to that of poly(vinylidene chloride), 55 cm3/m2/day/atm at a film thickness of 11 μm. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2389–2397, 2000  相似文献   

14.
We present a comparative investigation on the etching of graphene catalyzed by Fe and Cu. When Fe or Cu thin film deposited on graphene is rapidly annealed in either N2 or forming gas (10% H2/90% N2), particles are produced due to the dewetting of thin films. Low-voltage scanning electron microscopy reveals different morphology for Fe and Cu particles and their strikingly different catalytic etching behaviors. For the Fe thin film on graphene annealed at 950 °C in either gas environment, graphene is severely damaged, suggesting that the etching could occur through catalytic carbon hydrogenation or carbon dissolution into Fe due to the strong Fe–C interactions. In contrast, while no etching takes place for Cu particles on graphene at 1050 °C in N2, Cu particles catalytically etch channels in graphene in forming gas through carbon hydrogenation, and the width of the channel is much narrower than the diameter of Cu particle due to the non-wetting behavior of Cu on graphene. The weak interactions between Cu and graphene, along with the low solubility of carbon in Cu, make Cu particles ideal for tracking their etching paths on graphene. This work provides new insights into the metal-catalyzed etching of graphene.  相似文献   

15.
Poly(oxybenzoate-co-oxynaphthoate) (POCO) film surfaces were modified by four plasma gases, Ar, O2, N2 and NH3, and the effects of the plasma modification were investigated in order to understand the adhesion with copper metal. The Ar, O2, N2 and NH3 plasmas converted the POCO surfaces from hydrophobic to hydrophilic. The effect of the plasma on the hydrophilic modification was in the order: Ar plasma > O2 plasma > N2 plasma > NH3 plasma. The plasma modification contributed to the adhesion between the deposited copper metal and the POCO film. The NH3 plasma was most effective in improving the adhesion, and the Ar plasma was ineffective. The plasma-modified POCO film surfaces showed quite different Cls spectra from that of the original POCO film. There were large differences in the Cls and Nls spectra between the NH3 and Ar plasma modifications. The NH3 plasma modification did not show Cls component #5 due to π–π* shake-up satellite, but the Ar plasma modification did show this component. Furthermore, NH3 plasma modification led to a new Nls spectrum. The plasmas caused etching of the POCO film surfaces, and the etch rate depended on what plasma was used and how much RF power was used. The NH3 plasma-modified POCO film surface showed a larger R a (25.5 nm) than the other plasma-modified surfaces (R a = 16.4–19.0 nm), which were comparable to that of the original surface (R a = 14.8 nm). The NH3 plasma led to a highly-undulated surface, and the other plasmas did not alter the surface roughness. The roughened surfaces showed contribution to enhancement of the adhesion to the deposited copper metal.  相似文献   

16.
The influence of low pressure oxygen (O2) and argon (Ar) gas plasma modification of polyimide film on the adhesion to an alloy plating layer made from chromium (Cr) and nickel (Ni) was investigated. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed, respectively, to estimate the chemical and morphological status of the modified polyimide surface. Attenuated total reflectance-Fourier transform infrared (ATR-IR) spectroscopy and scanning electron microscopy (SEM) were also employed to determine the fracture mode during an adhesion durability test. The results indicated that O2 plasma treatments generated carboxyl groups, but an excess of carboxyl groups could oxidize the Cr at the interface at elevated temperatures, which led to a loss of adhesion.  相似文献   

17.
In the present study, effect of Cu2O film deposited via successive ionic layer adsorption and corresponding chemical reaction (SILAR method) on Cu–Sn coated steel substrate was explored for the purpose of improving the adhesion of steel with rubber. The effect of the relative alkali concentration in the oxide film deposition bath and the number of immersion cycles on the interfacial adhesion affecting the nature of oxide film deposited, its thickness and surface coverage were investigated. In the current study, Cu–Sn coated steel bead wire with coated surface roughness (Ra) around 2 μm showed an improvement of 33% in adhesion (in terms of pull out force) with an optimum alkali/Cu ion concentration of 25:1 with single dipping cycle attributed to an optimum oxide coating thickness of ~70 nm. Surface morphology study exhibited formation of thicker coating with increase in number of dipping cycles. Satisfactory thermal stability of the Cu2O film was confirmed as no re-oxidation of the Cu2O film to CuO was observed in the 200 °C heat treated samples.  相似文献   

18.
Nano-titania (TiO2) incorporated into polyimide (PI) matrix can significantly enhance the adhesion strength for PI/TiO2 hybrid film and copper system. Surface modifications by various plasma treatments (Ar, Ar/N2 and Ar/O2) were also applied in this study to improve the adhesion strength. The Ar/N2 plasma treatment is regarded as the more effective way in promoting the adhesion strength. The maximum adhesion value of 9.53 N/cm was obtained for the PI/TiO2-1 wt% hybrid film with Ar/N2 plasma treatment. It is enhanced about 10 times as large as pristine PI. Furthermore, by Ar/O2 plasma treatment, a weak boundary of copper oxide was formed at the interlayer between PI/TiO2 hybrid film and copper which decreases the adhesion strength. The effects of plasma treatment and content of nanosized TiO2 on the adhesion strength between PI/TiO2 hybrid film and copper system were studied. Atomic force microscope and contact angle analyses were used to measure the changes in surface morphology and surface energy as a result of plasma treatment. Besides, the interfacial states of peeled-off polymer side and copper side were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Based on the result of XPS spectra, the peeled-off failure mode between PI/TiO2 hybrid film and copper was proposed in this study.  相似文献   

19.
《Ceramics International》2023,49(12):20304-20314
Bismuth ferrite based thin films were grown by RF magnetron sputtering under different experimental conditions. The effects of substrate temperature, Ar:O2 mass flow ratio and gas mixture pressure on the films’ microstructure, phase evolution, optic, ferroelectric and magnetic properties were systematically investigated. The structural analysis results revealed an amorphous phase for the films deposited at a substrate temperature below 500 °C, while for the thin films deposited at 700 °C, a ε-Fe2O3 secondary phase was detected. The diffraction lines of the samples deposited at 600 °C were associated with Bi2Fe4O9 and Bi25FeO40 phases. The increase in the mixture gas pressure up to 1 Pa showed an improved crystallinity of the deposited films, while, at higher working gas pressures, the films were found to be amorphous. The use of low O2 to Ar mass flow ratio during the deposition led to a phase transformation process. EDX and RBS measurements exposed a uniform distribution of the main elements, revealing some stoichiometry changes induced by the pressure variation. The optical band gap values were influenced by the substrate temperature and pressure of the Ar:O2 gas. The magnetic properties were correlated with the structural features, the highest magnetic response being observed for the sample deposited at 600 °C, 1 Pa and 3:1 Ar:O2 gas pressure. According to the PFM results, the film deposited at 700 °C, Ar:O2 ratio 3:1 and total gas pressure 1 Pa clearly outperformed the others due to their excellent ferroelectric properties and outstanding piezo-response. The sample deposited at 700 °C showed both visible light-driven degradation and piezodegradation activities. The piezocatalytic and photocatalytic activities were ascribed to the high piezoresponse and to a more efficient separation of electrons and holes induced by a built-in electric field that is caused by the larger remnant polarization of Bi2Fe4O9 and Bi2Fe4O9/ε-Fe2O3 hetero-junction.  相似文献   

20.
Diamond like carbon (DLC) thin films were deposited on p-type silicon (p-Si), quartz and ITO substrates by microwave (MW) surface-wave plasma (SWP) chemical vapor deposition (CVD) at different substrate temperatures (RT ∼ 300 °C). Argon (Ar: 200 sccm) was used as carrier gas while acetylene (C2H2: 20 sccm) and nitrogen (N: 5 sccm) were used as plasma source. Analytical methods such as X-ray photoelectron spectroscopy (XPS), FT-IR and UV–visible spectroscopy were employed to investigate the structural and optical properties of the DLC thin films respectively. FT-IR spectra show the structural modification of the DLC thin films with substrate temperatures showing the distinct peak around 3350 cm 1 wave number; which may corresponds to the sp2 C–H bond. Tauc optical gap and film thickness both decreased with increasing substrate temperature. The peaks of XPS core level C 1 s spectra of the DLC thin films shifted towards lower binding energy with substrate temperature. We also got the small photoconductivity action of the film deposited at 300 °C on ITO substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号