首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although an adhesive joint can distribute load over a larger area than a mechanical joint, requires no holes, adds very little weight to structures and has superior fatigue resistance, it requires careful surface preparation of adherends for reliable joining and low susceptibility to service environments. The load transmission capability of adhesive joints can be improved by increasing the surface free energy of the adherends with suitable surface treatments. In this study, two types of surface treatment, namely the low pressure and the atmospheric pressure plasma treatment, were performed to enhance the mechanical load transmission capabilities of carbon/epoxy composite adhesive joints. The suitable surface treatment conditions for carbon/epoxy composite adhesive joints for both low and atmospheric pressure plasma systems were experimentally investigated with respect to chamber pressure, power intensity and surface treatment time by measuring the surface free energies of the specimens. The change in surface topography of carbon/epoxy composites was measured with AFM (Atomic Force Microscopy) and quantitative surface atomic concentrations were determined with XPS (X-ray Photoelectron Spectroscopy) to investigate the failure modes of composite adhesive joints with respect to surface treatment time. From the XPS investigation of carbon/epoxy composites, it was found that the ratio of oxygen concentration to carbon concentration for both low and atmospheric pressure plasma-treated carbon/epoxy composite surfaces was maximum after about 30 s treatment time, which corresponded with the maximum load transmission capability of the composite adhesive joint.  相似文献   

2.
Although an adhesive joint can distribute the load over a larger area than a mechanical joint, requires no holes, adds very little weight to the structure and has superior fatigue resistance, but it not only requires a careful surface preparation of the adherends but also is affected by service environments. In this paper, suitable conditions for surface treatments such as plasma surface treatment, mechanical abrasion, and sandblast treatment were investigated to enhance the mechanical load capabilities of carbon/epoxy composite adhesive joints. A capacitively coupled radiofrequency plasma system was used for the plasma surface treatment of carbon/epoxy composites and suitable surface treatment conditions were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time by measuring the surface free energies of treated specimens. The optimal mechanical abrasion conditions with sandpapers were investigated with respect to the mesh number of sandpaper, and optimal sandblast conditions were investigated with respect to sandblast pressure and particle size by observing geometric shape changes of adherends during sandblast process. Also the failure modes of composite adhesive joints were investigated with respect to surface treatment. From the peel tests on plasma treated composite adhesive joints, it was found that all composite adhesive joints failed cohesively in the adhesive layer when the surface free energy was higher than about 40 mJ/m2, because of high adhesion strength between the plasma treated surface and the adhesive. From the peel tests on mechanically abraded composite adhesive joints, it was also found that the optimal surface roughness and adhesive thickness increased as the failure load increased.  相似文献   

3.
The load capabilities of carbon fiber-epoxy composite adhesive joints are affected by surface characteristics of the composite adherends such as surface free energy and chemical composition, which can be altered by plasma surface treatment and the type of release film for demolding carbon fiber-epoxy composites from metal molds. In this paper, suitable plasma surface treatment conditions for carbon fiber-epoxy composite adherends were investigated to enhance the strength of carbon fiber-epoxy composite adhesive joints using dielectric barrier discharges of atmospheric pressure plasmas. The effects of plasma surface treatment on the surface free energy and adhesion strength of carbon fiber-epoxy composites were experimentally investigated with respect to surface treatment time. Also, the surface and adhesion characteristics of carbon fiber-epoxy composites were investigated with respect to release films such as fluorinated ethylene propylene (FEP), high density polyethylene (PE) and Nylon 6.6. Quantitative chemical bonding analysis with X-ray photoelectron spectroscopy (XPS) was also performed to understand the load capabilities of composite adhesive joints with respect to plasma treatment time and release films. From the experimental results, it was found that plasma treatment of carbon fiber-epoxy composites did enhance its adhesion strength, irrespective of the type of release film. Regarding adhesion strength, Nylon 6.6 was found to be the most suitable release film for these composites when no plasma treatment could be applied. From the XPS measurements on carbon fiber-epoxy composites, it was found that the carbon bond ratio of C=O to C-C and C-H reached a maximum at around 10 s treatment time, which corresponded well with the load transmission capability of the composite adhesive joint.  相似文献   

4.
The surface of glass/epoxy composite material was embedded with carbon black which was dispersed in methyl ethyl ketone (MEK) during the curing process to enhance the adhesion strength of the glass/epoxy composite structure. The morphological effect of the carbon black on the surface of composite was observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Quantitative chemical bonding analysis with X-ray photoelectron spectroscopy (XPS) was also performed to observe chemical bonding states on the surface. The lap shear strength of the glass/epoxy composite adhesive joints where composite adherends were embedded with carbon black was investigated with respect to the type and amount of embedment. Also, the tensile properties of the carbon black embedded glass/epoxy composites were measured to observe the mechanical degradation of the composite due to the MEK. The surface free energies of carbon black embedded composites were determined from the van Oss–Chaudhury–Good equation to correlate the lap shear strength of the adhesive joints with the surface free energies of composite adherends. From the experimental results, it was found that the carbon black embedment of the composite adherend improved much the bond strength due to the increased surface roughness on nano-scale as well as increased surface free energy.  相似文献   

5.
The effect of surface treatment of aluminum on the bonding characteristics of aluminum- CFRP (carbon fiber reinforced plastic) composite joints has been investigated. The surface of the aluminum panel was treated by DC plasma. The plasma treatment was carried out at different treatment times and volume ratios of acetylene gas to nitrogen gas. The volume ratios used were 1 : 9, 3 : 7, 5 : 5, 7 : 3, and 9 : 1. The treatment times used were 10, 20, 30, 40, 50, and 60 s. Optimal plasma treatment conditions were determined by measuring the T-peel strength and water contact angle as functions of the treatment time and gas volume ratio. Single lap shear tests and T-peel tests were performed using plasma-treated aluminum-CFRP composite joints and regular aluminum-CFRP composite joints to determine the effect of treatment on the shear strength and T-peel strength. The results showed that the water contact angle was minimum and the peel strength was maximized when the aluminum was plasma-treated for 30 s at a volume ratio of 5 : 5. The shear strength of aluminum-CFRP composite joints plasma-treated under the optimal treatment conditions was 33% higher than that of regular aluminum-CFRP composite joints. The T-peel strength of plasma-treated aluminum-CFRP composite joints was almost six times larger than that of regular aluminum-CFRP composite joints. SEM examination showed that the improvement in bond strength was attributed to a uniform spread of the epoxy adhesive due to the surface energy increase of aluminum and this resulted in a cohesive failure of the epoxy adhesive.  相似文献   

6.
The effect of water absorption on the strength of single lap adhesive joints subjected to accelerated hygrothermal ageing (55 °C, 95% relative humidity, 800 h) was analysed. Two different variables were studied: the surface treatment of the carbon fibre/epoxy laminates (peel ply, grit blasting and atmospheric pressure plasma) and the addition of carbon nanofillers (0.5 wt% nanofibres and 0.25 wt% nanotubes) to the epoxy adhesive. The joint strength and the failure mode of the joints were investigated. Furthermore, the amount of water absorbed by the adhesive was determined.Adhesive joints with peel ply-treated laminates exhibit an increase in their strength, which is attributed to a relaxation of stresses in the adhesive/laminate interface; with grit blasting, this property remains almost constant. Plasma treatment provides the worst ageing behaviour because this treatment results in a surface with a higher surface free energy, which is more susceptible to environmental attack. The nanoreinforcement of the adhesive has a beneficial effect: it decreases the amount of absorbed water.  相似文献   

7.
In order to improve the tensile lap shear strength of adhesively bonded joints, nano-particles were dispersed in the adhesive using a 3-roll mill. The dispersion states of nano-particles in the epoxy adhesive were observed with TEM (Transmission Electron Microscopy) with respect to the mixing conditions, and the effect of nano-particles on the mechanical properties of the adhesive was measured with respect to dispersion state and weight content of nano-particles. Also the static tensile load capability of the adhesively bonded double lap joints composed of uni-directional glass/epoxy composite and nano-particle-reinforced epoxy adhesive was investigated to assess the effect of nano-particles on the lap shear strength of the joint. From the experimental and FE analysis results, it was found that the nano-particles in the adhesive improved the mechanical properties of the adhesive. Also the increased failure strain and the reduced CTE (coefficient of thermal expansion) of the nano-particle-reinforced adhesive improved the lap shear strength of adhesively bonded joints.  相似文献   

8.
This investigation highlights the adhesion performance of carbon fiber‐ and glass fiber‐reinforced polyphenylene sulfide when joined by high‐performance neat epoxy adhesive and nanofilled epoxy adhesive. A significant increase in the surface energy of these materials is observed after the surface modification with atmospheric plasma treatment. An increase in surface roughness is observed after exposing the surface to plasma. Lap shear testing of untreated and plasma‐treated joints is carried out to correlate the improvement in adhesion properties with the joint strength. A considerable increase in joint strength is observed when the surfaces of these materials are modified by atmospheric pressure plasma. There is a further increase in joint strength when the composites are joined by nanofilled epoxy adhesive, and subsequent exposure to electron beam radiations results in minor increase in the joint strength. Finally, the fractured surfaces of the joints are examined and the analysis is performed. POLYM. ENG. SCI., 50:1505–1511, 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
To have a better knowledge of the phenomena that affect the adhesion characteristics of wood plastic composites (WPCs) a series of surface treatments was performed. The treatments consisted of chemical, mechanical, energetic, physical, and a combination of energetic and physical WPC surface modifications. After each treatment, the composite boards were bonded using a commercial epoxy adhesive, and bond shear strength was determined according to ASTM D 905. All the surface treatments, except the mechanical one, were performed and presented in a previous paper (W. Gramlich et al., J. Adhesion Sci. Technol. 20, 1873–1887 (2006)). Mechanical treatment and surface characterization for all the treatments were performed in the present study. The surface characterization included application of thermodynamic and spectroscopic techniques. Most of the surface treatments improved the adhesive bondability of wood plastic composites and, particularly, the smoothest WPC surfaces increased the shear strength by 100% with respect to the control. Thermodynamic measurements indicate that the WPCs low surface energy of about 25 mJ/m2, is likely due principally to the surface migration of a lubricant component used in the extrusion formulation. The surface energy increased over 45% with respect to the control samples after the chemical treatments. X-ray photoelectron spectroscopy analysis indicated that high oxidation levels of the WPC surfaces resulted in high surface energy and high bond shear strength.  相似文献   

10.
—As the applications of composite structures have increased, various techniques to join composite parts to the structures have been developed in order to meet the required adhesion strength. In this work, surface modification of carbon/epoxy composites was investigated using ultraviolet (UV) surface treatment to increase the adhesion strength between the carbon/epoxy composite and the epoxy adhesive. After UV surface treatment, X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were performed to analyze the surface characteristics of the carbon/epoxy composites. From the results of XPS analyses and adhesion strength tests, it was found that the increase of C O bond density on the surface of carbon/epoxy composite caused the enhancement of adhesion strength. Also it was found that the UV-B (wavelength 280–315 nm) surface treatment resulted in a superior adhesion strength compared to the UV-A (wavelength 315–400 nm) surface treatment.  相似文献   

11.
The effect of atmospheric plasma treatment (APT) on the bonding performance of a cyanate ester and an epoxy carbon fiber reinforced composite fabricated with a polyester peel ply was evaluated. A room temperature (RT) cured epoxy, an elevated temperature cured epoxy, and a cyanate ester resin, were used as the bonding adhesives. Only small increases in the carboxyl species concentration were observed for both composite systems as a function of increasing plasma treatment. Lap shear (LS) tests of the bonded composites showed that the APT resulted in a 30% strength improvement for the RT cured epoxy bonded specimens while the cyanate ester composite exhibited negligible increases due to the formation of a highly oxidized, weakly bonded ash. Contact angle measurements indicated that the temperature exposure associated with the curing of the elevated temperature adhesives also reduced the efficacy of APT. Modifications of the bonding surface of these composites by the incorporation of a plasma responsive (PR) layer resulted in significant LS improvements. After incorporating the PR layer, the improvement in adhesive strength was over 225% that of an untreated specimen and approximately 190% that of the equivalently treated unmodified system. Bond strengths correlated with corresponding increases in carboxyl concentrations after APT.  相似文献   

12.
Short aramid fibers have been successfully used to reinforce the interface adhesive property between carbon fiber/epoxy composites and aluminum foam, and to form aramid‐fiber “composite adhesive joints.” In this study, to further improve the reinforcing effect of the aramid‐fiber‐reinforced adhesive joints, aramid fibers were ultrasonic treated to conduct different surface conditions. Critical energy release rate of the carbon fiber/aluminum foam sandwich beams with as‐received and treated interfacial aramid fibers were measured to study the influence of the surface treatment on aramid fibers. It was found that reinforcements in critical energy release rate were achieved for all samples with treated aramid fiber as measured under double cantilever beam condition. The interfacial characteristics of the short aramid fibers with different surface condition were investigated and discussed based on scanning electron microscopy observations. It is suggested that advanced bonding between aramid fibers and epoxy resin was conducted after surface treatment, and more energy was therefore absorbed through fiber bridging during crack opening and extension process. POLYM. COMPOS., 36:192–197, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
In this study, the role of surface treatments of CFRP (graphite/epoxy composite) and aluminum (7075-T6) on the adhesively-bonded CFRP-aluminum joints has been investigated. The CFRP was surface-treated by Ar+ ion irradiation in an oxygen environment and the aluminum was surface-treated using a DC plasma. Ar+ ion irradiation treatment was carried out at Ar+ ion dose of 1016 ions/cm2. Plasma treatment was carried out at a volume ratio of acetylene gas to nitrogen gas of 5:5 and the treatment time was 30 s. The effect of surface treatments on the fracture behavior CFRP-aluminum joints was determined from fracture tests using three different CLS (cracked lap shear) specimens: (1) untreated CFRP/untreated aluminum, (2) ion-irradiated CFRP/untreated aluminum and (3) untreated CFRP/plasma-treated aluminum. Fracture behaviors (fracture load, fracture toughness, fracture surfaces) of these three different specimens were compared. The results showed that both fracture load and fracture toughness of CFRP-aluminum joints were in the following order: ion-irradiated CFRP/untreated aluminum specimen > untreated CFRP/plasmatreated aluminum specimen > untreated CFRP/untreated aluminum specimen. SEM examination of fracture surfaces showed that fracture occurred as an interfacial failure for untreated specimens. On the other hand, a cohesive failure in the adhesive was the primary fracture mode for specimens surface-treated by ion irradiation or plasma.  相似文献   

14.
The effect of the addition of carbon nanoreinforcements to an epoxy adhesive on the strength and toughness of carbon fibre/epoxy composite joints was studied. The laminate surfaces, treated with peel ply, were characterised by profilometry, image analysis and wettability. The mechanical properties of the joints were determined by lap shear testing and double cantilever beam testing. The fracture mechanisms were studied by scanning electron microscopy.The addition of carbon nanofibres and carbon nanotubes caused an increase in the mode-I adhesive fracture energy, GIC, of the joints while their lap shear strengths remained approximately constant. This improvement in the fracture behaviour was attributed to the occurrence of toughening mechanisms when carbon nanoreinforcements were added to the epoxy adhesive. Additionally, the use of carbon nanotubes improved the interfacial strength between the adhesive and the substrate, changing the crack growth behaviour and the macroscopic failure mode.  相似文献   

15.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

16.
Most adhesively bonded joints exhibit adhesive or cohesive failure, i.e. failure at the adhesive/adherend interface or within the adhesive, respectively. The main objective of this study is to investigate the effect of surface modification of the metal substrate accompanied by modification of the adhesive properties on the strength and failure mechanism of bonded joints. A 5061 aluminium alloy has been used as the metal substrate onto which two types of surface treatments were applied; chemical surface modification and gritblasting. A standard epoxy resin was used as the adhesive medium, in which multi-wall carbon nanotubes (MWCNTs) were dispersed, with a range of weight fraction content (from 0.03% to 0.5%). The resin was fully characterised by mechanical testing in order to determine the optimum weight fraction to enhance its properties. Aluminium to aluminium and glass fibre reinforced polymer (GFRP) composite to aluminium single lap joints bonded with either pure epoxy resin or MWCNT reinforced epoxy resin were subsequently manufactured and tested. The tests show a moderate increase of the joint strength when MWCNTs are added into the adhesive with the failure mechanism changing from cohesive to adhesive. In addition, the comparison between different surface preparation methods shows that gritblasting results in considerably improved adhesive strength over chemical treatment.  相似文献   

17.
Adhesively bonded composite single lap joints were experimentally investigated to analyze the bondline stress concentrations and characterize the influence of adhesive ductility on the joint strength. Two epoxy paste adhesives—one with high tensile strength and low ductility, and the other with relatively low tensile strength and high ductility—were used to manufacture composite single lap joints. Quasi-static tensile tests were conducted on the single lap joints to failure at room temperature. High magnification two-dimensional digital image correlation was used to analyze strain distributions near the adhesive fillet regions. The failure mechanisms were examined using scanning electron microscopy to understand the effect of adhesive ductility on the joint strength. For a given surface treatment and laminate type, the results show that adhesive ductility significantly increases the joint strength by positively influencing stress distribution and failure mechanism near the overlap edges. Moreover, it is shown that high magnification two-dimensional digital image correlation can successfully be used to study the damage initiation phase in composite bonded joints.  相似文献   

18.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

19.
For the first time, the efficiency of different surface pretreatment approaches prior to adhesive bonding of a fibreglass-reinforced epoxy vinyl ester thermoset composite has been investigated. It was found that grit-blasting generally had a negligible effect on the surface free energy (SFE) calculated using the Owens, Wendt, Rabel, and Kaelble method, as well as the Lifshitz–van der Waals/acid-base (LWAB) approach. However, contrary to abrading, grit-blasting has shown its efficiency to flatten sharp surface irregularities and introduce surface roughness features suitable to adhesive bonding processes. With or without a previous grit-blasting step, argon gas atmospheric cold plasma treatment has shown a slight to moderate efficiency in increasing the SFE polar component of the composite. However, it was found that the addition of 0.07% oxygen to the argon plasma readily allows an important gain in the SFE polar component. Indeed, when processed at a speed of 30 m/min on a previously grit-blasted composite surface, the Ar/O2 atmospheric cold plasma treatment increases the surface free energy to values >73 mJ/m2, making the surface condition optimized for structural adhesive bonding. An oxidation mechanism of the composite surface exposed to atmospheric cold plasma was suggested on the basis of correlations established between the polar part of SFE obtained from the Owens et al. method, acid/base components calculated using the LWAB approach, and ATR infrared spectroscopy signatures obtained for a model polyolefin material.  相似文献   

20.
This paper presents the strength of metal-to-metal bonded joints with a flaw in the interface between the adhesive layer and the adhering surface of adherend. The test specimens of butt joints are prepared by bonding two thin-wall metal tubes. The materials are carbon steel, aluminum alloy, brass and copper. The adhesive is epoxy resin. The tensile and shear strength of the joints are experimentally determined by subjecting the specimens to axial load and torsion for various flaw sizes and thickness of adhesive layers. Linear elastic fracture mechanics is applied to the experimental results. The stress intensity factors for a layered composite with a flaw in the interface are numerically calculated in terms of flaw size and loading by using Erdogan's formulas. The fracture stresses of joints with a flaw are predicted at the critical values of the stress intensity factors. The strength of joints without a flaw is also correlated with the stress intensity factors by use of a concept of “effective flaw size”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号