首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of hydroxyl group (OH) concentration on the durability of adhesive bonds formed between an epoxy resin and aluminium adherend has been examined. Initially, surface analysis in combination with chemical derivatisation was employed to characterise the OH and epoxy functional groups present in FM-73, a structural epoxy adhesive. Bulk FM-73 indicated a higher degree of cure than the surface of FM-73 present at the interface of an epoxy–aluminium adhesive joint. Plasma and water treatment of the aluminium adherend was employed to alter the metal oxide's surface OH concentration. Despite a several-fold difference of aluminium surface OH concentrations for the different metal pre-treatments, there was no significant variation in the adhesive joint fracture toughness in a humid environment, G Iscc. In contrast, grit-blasting the aluminium prior to bonding increased G Iscc almost 15-fold. Simple calculations indicate that the aluminium surfaces used in the bonding experiments would have a large excess of OH groups available to react with a standard epoxy resin and that the influence of surface roughness on adhesion durability is not insignificant.  相似文献   

2.
In this work aluminium alloy surfaces have been subjected to three different methods of surface pre-treatments such as solvent degreasing, FPL (Forest Products Laboratory) etching and priming using an epoxy based primer. The treated surfaces were evaluated for surface energy, contact angle, surface topography, surface roughness and adhesive strength characteristics. The influence of surface pre-treatments on the variation of polar, dispersive and total surface energy of the surfaces is addressed. A wettability test was performed on the surfaces using an epoxy adhesive in order to assess the influence of the pre-treatment techniques on substrate/adhesive interaction. Theoretical work of adhesion values for the various pre-treated surfaces were calculated using the contact angle data and further tested experimentally by adhesive bond strength evaluation by tensile testing of a single lap aluminium-epoxy-aluminium assembly. The method of surface pre-treatment showed a profound effect on the surface topography and roughness by AFM. This study reveals that a combination of high surface energy and high surface roughness of the substrate along with good wettability of the adhesive contributed to the highest joint strength for the aluminium alloy through the FPL etching pre-treatment.  相似文献   

3.
A detailed study of the effect of pre-treatment applied on the surface characteristics of aluminium substrates and on the adhesive strength of epoxy–aluminium joints is reported. The variation of the density, composition and aspect of the adherends were analysed as a function of the applied pre-treatment. In order to determine the influence of alloying elements, two different aluminium alloys were used, A1050 and A2024. The adhesive strength was measured by the lap shear test, using several epoxy resins to analyse the influence of the adhesive nature.A chromate-free treatment based on the sulphuric acid-ferric sulphate etch provided an improved joint strength compared to dichromate-sulphuric acid etching, alkaline etching or mechanical abrasion. This increase is associated to the porous oxide layer formed, but it depends on the adhesive nature used. The joints with Al–Cu–Mg alloy substrates generally presented higher adhesive strength values than those with pure aluminium adherends, due to the selective etching of some allowing elements and intermetallic compounds, which have different electrochemical potential.  相似文献   

4.
Most adhesively bonded joints exhibit adhesive or cohesive failure, i.e. failure at the adhesive/adherend interface or within the adhesive, respectively. The main objective of this study is to investigate the effect of surface modification of the metal substrate accompanied by modification of the adhesive properties on the strength and failure mechanism of bonded joints. A 5061 aluminium alloy has been used as the metal substrate onto which two types of surface treatments were applied; chemical surface modification and gritblasting. A standard epoxy resin was used as the adhesive medium, in which multi-wall carbon nanotubes (MWCNTs) were dispersed, with a range of weight fraction content (from 0.03% to 0.5%). The resin was fully characterised by mechanical testing in order to determine the optimum weight fraction to enhance its properties. Aluminium to aluminium and glass fibre reinforced polymer (GFRP) composite to aluminium single lap joints bonded with either pure epoxy resin or MWCNT reinforced epoxy resin were subsequently manufactured and tested. The tests show a moderate increase of the joint strength when MWCNTs are added into the adhesive with the failure mechanism changing from cohesive to adhesive. In addition, the comparison between different surface preparation methods shows that gritblasting results in considerably improved adhesive strength over chemical treatment.  相似文献   

5.
A detailed study of the effects of grit blasting with different alumina grits on the surface characteristics of mild steel and aluminium alloy substractes is reported. Non-contacting 3D-laser profilometry was used to characterise surface texture, and surface energy was measured by static contact angle techniques. The chemical composition of the surface was determined by XPS analysis. Adhesion characteristics were investigated by the measurement of strength of lap shear and tensile butt joints using a two-part room temperature curing epoxy adhesive. As initial joint strengths were relatively insensitive to the changes in grit-blasting parameters, further studies were based on joint response to accelerated ageing conditions. The results indicate that the changes in joint properties associated with roughened surfaces cannot be explained simply by the increased roughness characteristics, such as mechanical keying and increased effective bond area. It is evident that changes in physical and chemical properties of the surfaces, arising from the grit-blasting process contributed significantly to the joint behaviour.  相似文献   

6.
The RC99 committee of the Japan Society for Mechanical Engineers conducted the benchmark tests on strengths of adhesive joints using different testing methods. The effects of joint configuration, loading mode, adherend yield strength and so on, on the strength and data scatter were investigated using two typical epoxy adhesives. The strengths obtained by various tests were compared with each other. The relationships among strengths of butt, single lap and double lap joints and fracture toughness were given. Thirteen member institutes of the committee participated in this project. The benchmark results allow us to recognize that the joint strengths are strongly affected by the curing process. The key to obtaining the appropriate joint strength, is precise temperature control inside the adhesive layer for curing. Toughened adhesives do not always give higher joint strengths than untoughened adhesives. The yield strength of adherends much affects the observed lap joint strength of adhesives.  相似文献   

7.
The forces between adhesive and adherend mainly influenced by the pre-treatment technology of the substrates have important effects on the bonding strength. In this paper, the influence of different pre-treatment processes and surface roughness on the tensile-shear strength of 2060 Al–Li alloy adhesive joints as well as related mechanism was investigated. In this perspective, substrates were processed by mechanical abrasion at different levels and by phosphoric acid anodizing, which resulted in different surface topographies that were characterized by means of roughness measurements. Single-lap joints were prepared using a two-component epoxy adhesive. The tensile-shear strength of joints was measured via destructive testing and the failure modes were analyzed to evaluate the quality of bonding. Results showed that with the increase of surface roughness of Al–Li alloy, the tensile-shear strength of the adhesive joints increased and the failure modes changed from interfacial failure to cohesive failure. The groove structures formed during mechanical abrading were regarded as being responsible for this strengthening behavior. Moreover, a rough porous membrane was produced on adherents’ surface by phosphoric acid anodizing, causing a consolidation of adhesion at the adhesive-substrate interface.  相似文献   

8.
An epoxy resin consisting of diglycidylether of bisphenol A (DGEBA) and methyltetrahydrophthalic anhydride (MTHPA) was cured against moulds with different surface characteristics: poly(ethylene terephthalate) (PET), perfluorinated ethylene propylene copolymer (FEP), and air. The epoxy surfaces were analysed using contact angle measurements and X-ray photoelectron spectroscopy (XPS). The results presented are interpreted in terms of differences in surface energy between the surface of the mould and the epoxy resin. With PET as the mould surface, the surface content of ester groups resulting from the anhydride increased as compared to the average bulk content. With the non-polar FEP mould, the amount of ester groups decreased instead. Shear tests on overlap joints obtained by adhesive bonding with polyurethane and epoxy adhesives showed, however, a high adhesive joint strength, both for epoxy surfaces obtained with FEP as mould, and for ground surfaces with a bulk composition. The surfaces generated in PET moulds yielded only poor adhesive joint strength. These differences in joint strength could be related to the concentration of reactive functional groups (-OH, -COOH) in the outermost surface of the cured epoxy resin.  相似文献   

9.
The degree of roughness of a metallic adherend is frequently a design option for an adhesive joint. But which direction should be taken for optimum joint strength? Should the surface be polished or macroscopically roughened, or is roughening inconsequential? In practice, roughening is generally recommended, but upon what basis is this recommendation made and for which adherends and adhesives is it valid?  相似文献   

10.
Adhesively bonded technology is now widely accepted as a valuable tool in mechanical design, allowing the production of connections with a very good strength‐to‐weight ratio. The bonding may be made between metal–metal, metal–composite or composite–composite. In the automotive industry, elastomeric adhesives such as polyurethanes are used in structural applications such as windshield bonding because they present important advantages in terms of damping, impact, fatigue and safety, which are critical factors. For efficient designs of adhesively bonded structures, the knowledge of the relationship between substrates and the adhesive layer is essential. The aim of this work, via an experimental study, is to carry out and quantify the various variables affecting the strength of single-lap joints (SLJs), especially the effect of the surface preparation and adhesive thickness. Aluminium SLJs were fabricated and tested to assess the adhesive performance in a joint. The effect of the bondline thickness on the lap-shear strength of the adhesives was studied. A decrease in surface roughness was found to increase the shear strength of the SLJs. Experimental results showed that rougher surfaces have less wettability which is coherent with shear strength tests. However, increasing the adhesive thickness decreased the shear strength of SLJs. Indeed, a numerical model was developed to search the impact of increasing adhesive thickness on the interface of the adherend.  相似文献   

11.
A research study on the fatigue behaviour of aluminium alloy adhesive lap joints was carried out to understand the effect of surface pre-treatment and adherends thickness on the fatigue strength of adhesive joints. The adherend material used for the experimental tests was an aluminium alloy 6082-T6 in the form of thin sheets, and the adhesive used was a high strength epoxy (Araldite 420 A/B). The surface preparation included an abrasive preparation (AP joints) and sodium dichromate–sulphuric acid etch (CSA joints).A maximum fatigue strength was obtained for the CSA surface treatment with a 1.0 mm adherends’ thickness. The fastest fatigue damage was related with a high surface roughness and a high stress perpendicular to adhesive surface, which helps to promote the adhesive failure. A numerical analysis was also performed to understand the effect of the adherends thickness on the stress level. Results showed an increase of the out-of-plane peak stresses with the increase of adherends thickness.  相似文献   

12.
In this paper, manufacturing technology of the tubular single lap adhesive joint was studied to obtain reliable and optimal joint quality. In addition, a surface preparation method and a bonding process for the joint were devised. The effect of the adhesive thickness and the adherend roughness on the fatigue strength of the joint was experimentally investigated. From experiments, it has been found that the fatigue strength of the joint increased as the adhesive thickness decreased and the optimal arithmetic surface roughness of the adherends was about 2 μm.  相似文献   

13.
One parameter that influences adhesively bonded joints performance is the adherend material and its effect should be taken into consideration in the design of adhesive joints. In this work, the effect of material on the mechanical behaviour of adhesive joints was investigated experimentally and numerically by single lap joints (SLJs) with different adherend materials (high strength steel, low strength steel and composite). The adhesives selected were two new modern tough structural adhesives used in the automotive industry. It was found that, for relatively short overlaps in SLJs bonded with structural modern tough adhesives, failure is dominated by adhesive global yielding and the influence of material on joint strength is not significant. For larger overlaps, the failure is not anymore due to global yielding and the effect of material becomes more important. Moreover, it was possible to evaluate which adhesive is more suited for each material.  相似文献   

14.
In this study the effect of adhesive free-end geometry on the initiation and propagation of damaged zones in adhesively bonded single- and double-lap joints was investigated considering the material non-linear behaviour of both adhesive and adherends and the geometrical non-linearity. The damaged adhesive and adherend zones exceeding the specified ultimate strains were determined based on the modified von Mises criterion for adherends and the failure criterion, including the effects of the hydrostatic stress states for the epoxy adhesives proposed by Raghava and Cadell. The stiffness of each finite element in the damaged zones was reduced to a negligible value, thus not contributing to the overall stiffness of the adhesive joint. This simple method provides useful information on the initiation and propagation of damaged zones in both the adhesive layer and adherends. The damaged adhesive zones due to a tensile load were observed to initiate around the rounded adherend corners inside the adhesive fillets and to propagate first towards both the free surface of the adhesive fillet and across the adhesive layer, and later along the adherend–adhesive interface. The damaged adhesive zones initiate at the left free-end of the adhesive-upper adherend interface and at the right free-end of the adhesive-lower adherend interface and propagate along these interfaces in the large adhesive fillets. In the bending test, the damaged adhesive zones appeared only at the left free-end in tension of the adhesive-upper adherend interface for the large adhesive fillets, but around the lower adherend corner for the smaller adhesive fillets. Later, it propagated with a similar mechanism as in the tensile load. In a double-lap joint subjected to a tensile load, the damaged zone appeared around the upper adherend corner inside the right adhesive fillet in tension, and propagated first towards the free surface of the adhesive fillet and through the adhesive layer towards the adhesive-middle adherend interface, and later along this interface. For all loading conditions, increasing the adhesive fillet size caused the damaged zone initiation to occur at a larger load level. The SEM micrographs of fracture surfaces around the adhesive fillets showed that the damaged zones initiated around the adherend corner inside the adhesive fillet and propagated through the adhesive fillets.  相似文献   

15.
The objective of the present study was to better understand the effect of the change in the geometry of the adherend corners on the stress distribution in single lap joints and, therefore, on the joint strength. Various degrees of rounding were studied and two different types of adhesives were used: one very brittle and another which had a large plastic deformation. Experimental results on the strength of joints with different degrees of rounding are presented. For joints bonded with brittle adhesives, the effect of the rounded adherend corners is larger than that with ductile adhesives. The strength of joints with brittle adhesives with a large radius adherend corner increases by about 40% compared to that with a sharp adherend corner. It is shown that for joints bonded with brittle adhesives, crack propagation occurs for a short period before it grows into catastrophic failure. However, for ductile adhesives, there is large adhesive yielding and small crack propagation before final failure. Another important feature of joints bonded with ductile adhesives is that there may be more than one crack in the adhesive layer before failure. This makes strength predictions more difficult. The second part of the paper presents an approximate method for predicting the strength of joints bonded with brittle and ductile adhesives, with and without adherend corner rounding. The predictions, based on an average value around the singularity, compare well with the experimental results, especially for joints bonded with ductile adhesives.  相似文献   

16.
The influences of various Al surface treatments, adhesive thicknesses as well as the incorporation of synthesized microcapsules into epoxy adhesive on the shear strength of adhesive/ Al joints have been investigated using lap-shear tensile tests. First, the influence of adhesive thickness on the shear strength of joints has been presented. Then, the effects of various Al surface treatments on the surface roughness of Al and shear strength of joint have been researched. Atomic force microscopy was used to study the Al surface morphologies and textures. Finally the few micron-sized polymeric microcapsules were synthesized and the shear performances of microcapsule filled epoxy adhesives were inspected. It was observed that the HCl acid based etching increased both micro-roughness and nano-texture of the Al surface and led to the peak shear strength. Moreover, HCl-nitric acid treatment offered the maximum value for the cohesive failure. Capsule inclusions into the adhesive displayed different influences on the joint shear performances depending on the capsule morphology and the surface treatment of Al.  相似文献   

17.
This paper presents an experimental investigation into various aspects of epoxy-bonded polymethylmethacrylate (PMMA) and PMMA-to-aluminium joints. The effects of adhesive thickness, overlap area, surface roughness, and environmental exposure on the joint strength were studied. Results indicated that the joint strength was not directly proportional to the overlap area, while sanding had a positive effect on the joint strength. A negative effect was observed when adhesive thickness was increased. The fatigue behaviour of adhesively-bonded joints under dynamic loading was found to be independent of frequency, for the range of values tested; however, it was dependent on the test temperature with greater reduction in fatigue life observed in PMMA-to-aluminium joints at higher temperature. Empirical equations from which the fatigue life of joints can be predicted were obtained by regression analysis. Intermittent fatigue testing of the joints was also performed. The epoxy adhesive tested proved to be a satisfactory choice for outdoor exposure. The rate of degradation of the adhesive was slow with the adherend itself degrading at a faster rate than the adhesive or the bondline.  相似文献   

18.
This paper presents an experimental investigation into various aspects of epoxy-bonded polymethylmethacrylate (PMMA) and PMMA-to-aluminium joints. The effects of adhesive thickness, overlap area, surface roughness, and environmental exposure on the joint strength were studied. Results indicated that the joint strength was not directly proportional to the overlap area, while sanding had a positive effect on the joint strength. A negative effect was observed when adhesive thickness was increased. The fatigue behaviour of adhesively-bonded joints under dynamic loading was found to be independent of frequency, for the range of values tested; however, it was dependent on the test temperature with greater reduction in fatigue life observed in PMMA-to-aluminium joints at higher temperature. Empirical equations from which the fatigue life of joints can be predicted were obtained by regression analysis. Intermittent fatigue testing of the joints was also performed. The epoxy adhesive tested proved to be a satisfactory choice for outdoor exposure. The rate of degradation of the adhesive was slow with the adherend itself degrading at a faster rate than the adhesive or the bondline.  相似文献   

19.
为了研究被粘接材料的线膨胀系数对胶接件拉伸剪切性能的影响,用改性环氧树脂(EP)胶粘剂粘接不同材料,并对该胶接件进行拉伸剪切强度试验和温度影响试验。研究结果表明,被粘接材料的线膨胀系数不同会导致胶层在热冷变化过程中受到内应力作用而破坏,同时热空气进入胶层会导致胶层氧化变色,致使胶粘剂界面结合强度和胶粘剂自身强度降低;两种被粘接材料的线膨胀系数差异越大,经热冷变化后胶接件的拉伸剪切性能越低;在相同条件下,热冷变化温差越大,胶接件的拉伸剪切性能越低。  相似文献   

20.
In this work, elasto-plastic stress analysis of a Single Lap Joint (SLJ) subjected to bending moment was investigated using 2D non-linear Finite Element Analysis (FEA). The SLJs, consisting of hardened steel as the adherend bonded by two adhesives, one stiff and one flexible, with very different mechanical behaviors were analyzed. In order to determine the effect of geometrical parameters on the performance of the SLJs, four different adherend thicknesses and overlap lengths for each adhesive were used. For verification of the analysis, the FEA results were compared with experimental results. It was observed that there was a significant effect of adherend thickness on the strength of the joint with both adhesives. However, the load carried by the SLJ with the flexible adhesive increased with increasing overlap length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号